package main import ( "bufio" "errors" "fmt" "io" "math" "os" "strconv" ) /*********** I/O ***********/ var ( // ReadString returns a WORD string. ReadString func() string stdout *bufio.Writer ) func init() { ReadString = newReadString(os.Stdin) stdout = bufio.NewWriter(os.Stdout) } func newReadString(ior io.Reader) func() string { r := bufio.NewScanner(ior) // r.Buffer(make([]byte, 1024), int(1e+11)) // for AtCoder r.Buffer(make([]byte, 1024), int(1e+9)) // for Codeforces // Split sets the split function for the Scanner. The default split function is ScanLines. // Split panics if it is called after scanning has started. r.Split(bufio.ScanWords) return func() string { if !r.Scan() { panic("Scan failed") } return r.Text() } } // ReadInt returns an integer. func ReadInt() int { return int(readInt64()) } func ReadInt2() (int, int) { return int(readInt64()), int(readInt64()) } func ReadInt3() (int, int, int) { return int(readInt64()), int(readInt64()), int(readInt64()) } func ReadInt4() (int, int, int, int) { return int(readInt64()), int(readInt64()), int(readInt64()), int(readInt64()) } // ReadInt64 returns as integer as int64. func ReadInt64() int64 { return readInt64() } func ReadInt64_2() (int64, int64) { return readInt64(), readInt64() } func ReadInt64_3() (int64, int64, int64) { return readInt64(), readInt64(), readInt64() } func ReadInt64_4() (int64, int64, int64, int64) { return readInt64(), readInt64(), readInt64(), readInt64() } func readInt64() int64 { i, err := strconv.ParseInt(ReadString(), 0, 64) if err != nil { panic(err.Error()) } return i } // ReadIntSlice returns an integer slice that has n integers. func ReadIntSlice(n int) []int { b := make([]int, n) for i := 0; i < n; i++ { b[i] = ReadInt() } return b } // ReadInt64Slice returns as int64 slice that has n integers. func ReadInt64Slice(n int) []int64 { b := make([]int64, n) for i := 0; i < n; i++ { b[i] = ReadInt64() } return b } // ReadFloat64 returns an float64. func ReadFloat64() float64 { return float64(readFloat64()) } func readFloat64() float64 { f, err := strconv.ParseFloat(ReadString(), 64) if err != nil { panic(err.Error()) } return f } // ReadFloatSlice returns an float64 slice that has n float64. func ReadFloat64Slice(n int) []float64 { b := make([]float64, n) for i := 0; i < n; i++ { b[i] = ReadFloat64() } return b } // ReadRuneSlice returns a rune slice. func ReadRuneSlice() []rune { return []rune(ReadString()) } /*********** Debugging ***********/ // ZeroPaddingRuneSlice returns binary expressions of integer n with zero padding. // For debugging use. func ZeroPaddingRuneSlice(n, digitsNum int) []rune { sn := fmt.Sprintf("%b", n) residualLength := digitsNum - len(sn) if residualLength <= 0 { return []rune(sn) } zeros := make([]rune, residualLength) for i := 0; i < len(zeros); i++ { zeros[i] = '0' } res := []rune{} res = append(res, zeros...) res = append(res, []rune(sn)...) return res } // Strtoi is a wrapper of strconv.Atoi(). // If strconv.Atoi() returns an error, Strtoi calls panic. func Strtoi(s string) int { if i, err := strconv.Atoi(s); err != nil { panic(errors.New("[argument error]: Strtoi only accepts integer string")) } else { return i } } // PrintIntsLine returns integers string delimited by a space. func PrintIntsLine(A ...int) string { res := []rune{} for i := 0; i < len(A); i++ { str := strconv.Itoa(A[i]) res = append(res, []rune(str)...) if i != len(A)-1 { res = append(res, ' ') } } return string(res) } // PrintIntsLine returns integers string delimited by a space. func PrintInts64Line(A ...int64) string { res := []rune{} for i := 0; i < len(A); i++ { str := strconv.FormatInt(A[i], 10) // 64bit int version res = append(res, []rune(str)...) if i != len(A)-1 { res = append(res, ' ') } } return string(res) } // PrintDebug is wrapper of fmt.Fprintf(os.Stderr, format, a...) func PrintDebug(format string, a ...interface{}) { fmt.Fprintf(os.Stderr, format, a...) } /********** FAU standard libraries **********/ //fmt.Sprintf("%b\n", 255) // binary expression /********** I/O usage **********/ //str := ReadString() //i := ReadInt() //X := ReadIntSlice(n) //S := ReadRuneSlice() //a := ReadFloat64() //A := ReadFloat64Slice(n) //str := ZeroPaddingRuneSlice(num, 32) //str := PrintIntsLine(X...) /* ASCII code ASCII 10進数 ASCII 10進数 ASCII 10進数 ! 33 " 34 # 35 $ 36 % 37 & 38 ' 39 ( 40 ) 41 * 42 + 43 , 44 - 45 . 46 / 47 0 48 1 49 2 50 3 51 4 52 5 53 6 54 7 55 8 56 9 57 : 58 ; 59 < 60 = 61 > 62 ? 63 @ 64 A 65 B 66 C 67 D 68 E 69 F 70 G 71 H 72 I 73 J 74 K 75 L 76 M 77 N 78 O 79 P 80 Q 81 R 82 S 83 T 84 U 85 V 86 W 87 X 88 Y 89 Z 90 [ 91 \ 92 ] 93 ^ 94 _ 95 ` 96 a 97 b 98 c 99 d 100 e 101 f 102 g 103 h 104 i 105 j 106 k 107 l 108 m 109 n 110 o 111 p 112 q 113 r 114 s 115 t 116 u 117 v 118 w 119 x 120 y 121 z 122 { 123 | 124 } 125 ~ 126 127 */ /*******************************************************************/ const ( // General purpose MOD = 1000000000 + 7 ALPHABET_NUM = 26 INF_INT64 = math.MaxInt64 INF_BIT60 = 1 << 60 INF_INT32 = math.MaxInt32 INF_BIT30 = 1 << 30 NIL = -1 // for dijkstra, prim, and so on WHITE = 0 GRAY = 1 BLACK = 2 ) func main() { n, q := ReadInt2() A := ReadIntSlice(n) f := func(lv, rv T) T { t := T{} t.v = lv.v + rv.v if lv.r >= INF_BIT60 || rv.l >= INF_BIT60 { } else if lv.r != rv.l { t.v++ } t.l, t.r = lv.l, rv.r return t } g := func(to T, from E) T { to.l += int(from) to.r += int(from) return to } h := func(to, from E) E { return to + from } p := func(e E, length int) E { return e } ti := T{v: 0, l: INF_BIT60, r: INF_BIT60} ei := 0 lst := NewLazySegmentTree(n, f, g, h, p, ti, E(ei)) for i := 0; i < n; i++ { lst.Set(i, T{v: 0, l: A[i], r: A[i]}) } lst.Build() for i := 0; i < q; i++ { c := ReadInt() if c == 1 { l, r, x := ReadInt3() lst.Update(l-1, r, E(x)) } else { l, r := ReadInt2() t := lst.Query(l-1, r) fmt.Println(t.v + 1) } } // for i := 0; i < n; i++ { // t := lst.Get(i) // PrintDebug("%d: %v\n", i, t) // } } // Assumption: T == E // type T int // (T, f): Monoid // type E int // (E, h): Operator Monoid // type share struct { // } type T struct { v, l, r int } // type E struct { // v, l, r int // } type E int type LazySegmentTree struct { sz int data []T lazy []E f func(lv, rv T) T // T <> T -> T g func(to T, from E) T // T <> E -> T (assignment operator) h func(to, from E) E // E <> E -> E (assignment operator) p func(e E, length int) E // E <> N -> E ti T ei E } func NewLazySegmentTree( n int, f func(lv, rv T) T, g func(to T, from E) T, h func(to, from E) E, p func(e E, length int) E, ti T, ei E, ) *LazySegmentTree { lst := new(LazySegmentTree) lst.f, lst.g, lst.h, lst.p = f, g, h, p lst.ti, lst.ei = ti, ei lst.sz = 1 for lst.sz < n { lst.sz *= 2 } lst.data = make([]T, 2*lst.sz-1) lst.lazy = make([]E, 2*lst.sz-1) for i := 0; i < 2*lst.sz-1; i++ { lst.data[i] = lst.ti lst.lazy[i] = lst.ei } return lst } func (lst *LazySegmentTree) Set(k int, x T) { lst.data[k+(lst.sz-1)] = x } func (lst *LazySegmentTree) Build() { for i := lst.sz - 2; i >= 0; i-- { lst.data[i] = lst.f(lst.data[2*i+1], lst.data[2*i+2]) } } func (lst *LazySegmentTree) propagate(k, length int) { if lst.lazy[k] != lst.ei { if k < lst.sz-1 { lst.lazy[2*k+1] = lst.h(lst.lazy[2*k+1], lst.lazy[k]) lst.lazy[2*k+2] = lst.h(lst.lazy[2*k+2], lst.lazy[k]) } lst.data[k] = lst.g(lst.data[k], lst.p(lst.lazy[k], length)) lst.lazy[k] = lst.ei } } func (lst *LazySegmentTree) Update(a, b int, x E) T { return lst.update(a, b, x, 0, 0, lst.sz) } func (lst *LazySegmentTree) update(a, b int, x E, k, l, r int) T { lst.propagate(k, r-l) if r <= a || b <= l { return lst.data[k] } if a <= l && r <= b { lst.lazy[k] = lst.h(lst.lazy[k], x) lst.propagate(k, r-l) return lst.data[k] } lv := lst.update(a, b, x, 2*k+1, l, (l+r)/2) rv := lst.update(a, b, x, 2*k+2, (l+r)/2, r) lst.data[k] = lst.f(lv, rv) return lst.data[k] } func (lst *LazySegmentTree) Query(a, b int) T { return lst.query(a, b, 0, 0, lst.sz) } func (lst *LazySegmentTree) query(a, b, k, l, r int) T { lst.propagate(k, r-l) if r <= a || b <= l { return lst.ti } if a <= l && r <= b { return lst.data[k] } lv := lst.query(a, b, 2*k+1, l, (l+r)/2) rv := lst.query(a, b, 2*k+2, (l+r)/2, r) return lst.f(lv, rv) } func (lst *LazySegmentTree) Get(k int) T { return lst.Query(k, k+1) } /* - まずは全探索を検討しましょう - MODは最後にとりましたか? - ループを抜けた後も処理が必要じゃありませんか? - 和・積・あまりを求められたらint64が必要ではありませんか? - いきなりオーバーフローはしていませんか? - MOD取る系はint64必須ですよ? */ /*******************************************************************/