#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using ll = long long; using vll = vector; using pll = pair; using qll = queue; using vb = vector; using mll = map; using sll = stack; #define REP(i,n) for(ll i(0);(i)<(n);(i)++) #define rep(i,n) for(ll i(0);(i)<(n);(i)++) #define ALL(a) a.begin(), a.end() #define elnd endl //* missspell check const ll INF = 1LL << 60; struct edgeForFlow{ll to, cap, rev; }; //! cap: may change; rev: pointer in G[to] void addEdgeForFlow(vector> &G, ll from, ll to, ll cap){ G[from].push_back((edgeForFlow){ to, cap, (ll) G[to].size()}); G[to].push_back((edgeForFlow) { from, 0, (ll) G[from].size()-1}); } ll dfsFordFulkson(vector> &G, vb &checked, ll v, ll t, ll f){ //* v: current vertex, t: sink, f: DELTA of this path. (No need for source) if(v == t) return f; checked[v] = true; REP(i, G[v].size()){ edgeForFlow &e = G[v][i]; if(!checked[e.to] && e.cap > 0){ ll d = dfsFordFulkson(G, checked, e.to, t, min(f, e.cap)); if(d > 0){ e.cap -= d; G[e.to][e.rev].cap += d; return d; } } } return 0; //* if no valid outgoing edges } ll maxFlowFordFulkson(vector> &G, ll s, ll t){ vb checked(G.size()); ll flow = 0; for(;;){ fill(ALL(checked), false); ll f = dfsFordFulkson(G, checked, s, t, INF); if(f == 0) return flow; flow += f; } } void bfsDinic(vector> &G, vll &level, ll s){ fill(ALL(level), -1); queue que; level[s] = 0; que.push(s); while(!que.empty()){ ll v = que.front(); que.pop(); for(ll i=0; i< G[v].size(); i++){ edgeForFlow &e = G[v][i]; if(e.cap > 0 && level[e.to] < 0){ level[e.to] = level[v] + 1; que.push(e.to); } } } } ll dfsDinic(vector> &G, vll &level, vll &iter, ll v, ll t, ll f){ //? iter: record where have been searched? //* v: current vertex, t: sink, f: DELTA of this path. (No need for source) if(v == t) return f; for( ll &i = iter[v]; i < G[v].size(); i++){ edgeForFlow &e = G[v][i]; if( e.cap > 0 && level[v] < level[e.to]){ ll d = dfsDinic(G, level, iter, e.to, t, min(f, e.cap)); if(d > 0){ e.cap -= d; G[e.to][e.rev].cap += d; return d; } } } return 0; //* if no valid outgoing edges } ll maxFlowDinic(vector> &G, ll s, ll t){ vll level(G.size()), iter(G.size()); ll flow = 0; for(;;){ bfsDinic(G, level, s); if(level[t] < 0)//* sink t is not reachable from s on current residual graph return flow; fill(ALL(iter), 0); ll f; while((f = dfsDinic(G, level, iter, s, t, INF)) > 0){ flow += f; } } } int main(){ ll N, M, d; cin >> N >> M >> d; vll u(M), v(M), p(M), q(M), w(M); REP(i, M){ scanf("%lld%lld%lld%lld%lld", &u[i], &v[i], &p[i], &q[i], &w[i]); } vector> G(2*M+2); ll max_cap=0; REP(i, M) max_cap += w[i]; max_cap++; //* source: 2M, sink: 2M+1 REP(i, M){ addEdgeForFlow(G, 2*i, 2*i+1, w[i]); } REP(i, M){ REP(j, M){ if(j == i) continue; if(p[j]>= (q[i]+d) && v[i]==u[j]){ addEdgeForFlow(G, 2*i+1, 2*j, min(w[i], w[j])); } } } REP(i, M){ if(u[i]==1){ addEdgeForFlow(G, 2*M, 2*i, max_cap); } if(v[i]==N){ addEdgeForFlow(G, 2*i+1, 2*M+1, max_cap); } } ll flow=0; flow = maxFlowDinic(G, 2*M, 2*M+1); cout<< flow << endl; return 0; }