/* preprocessor start */ #ifdef LOCAL #define _GLIBCXX_DEBUG // gcc #define _LIBCPP_DEBUG 0 // clang #define __clock__ #else #pragma GCC optimize("Ofast") // #define _GLIBCXX_DEBUG // #define _LIBCPP_DEBUG 0 // #define NDEBUG #endif // #define __buffer_check__ #define __precision__ 10 #define iostream_untie true #define debug_stream std::cerr #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __all(v) std::begin(v), std::end(v) #define __rall(v) std::rbegin(v), std::rend(v) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) /* preprocessor end */ namespace setting { using namespace std::chrono; system_clock::time_point start_time, end_time; long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast(end_time - start_time).count(); } void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; } void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; } struct setupper { setupper() { using namespace std; if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr); cout << fixed << setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) cerr << fixed << setprecision(__precision__); #endif #ifdef LOCAL debug_stream << "\n----- stderr at LOCAL -----\n\n"; #endif #ifdef __buffer_check__ atexit(buffer_check); #endif #ifdef __clock__ start_time = system_clock::now(); atexit(print_elapsed_time); #endif } } __setupper; // struct setupper } // namespace setting #ifdef __clock__ class { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built = false; public: void build(int crt_ln, const std::string &crt_func) { is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func; else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now()); long long diff = std::chrono::duration_cast(crt_pt - last_pt).count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } } myclock; // unnamed class #define build_clock() myclock.build(__LINE__, __func__) #define set_clock() myclock.set(__LINE__, __func__) #define get_clock() myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { // hash template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; // iostream template istream &operator>>(istream &is, pair &p) { return is >> p.first >> p.second; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } template struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis::apply(is, t); return is >> get(t); } }; template struct tupleis { static istream &apply(istream &is, tuple_t &t) { return is; } }; template istream &operator>>(istream &is, tuple &t) { return tupleis, tuple_size>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos::apply(os, t); return os << ' ' << get(t); } }; template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template ostream &operator<<(ostream &os, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template , string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template , string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std /* dump definition start */ #ifdef LOCAL #define dump(...) debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c; debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c; debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif /* dump definition end */ /* function utility start */ template T read(types... args) noexcept { T obj(args...); std::cin >> obj; return obj; } #define input(type, var, ...) type var{read(__VA_ARGS__)} // substitute y for x if x > y. template inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitute y for x if x < y. template inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search on discrete range. template iter_type binary(iter_type __ok, iter_type __ng, pred_type pred) { std::ptrdiff_t dist(__ng - __ok); while(std::abs(dist) > 1) { iter_type mid(__ok + dist / 2); if(pred(mid)) __ok = mid, dist -= dist / 2; else __ng = mid, dist /= 2; } return __ok; } // binary search on real numbers. template long double binary(long double __ok, long double __ng, const long double eps, pred_type pred) { while(std::abs(__ok - __ng) > eps) { long double mid{(__ok + __ng) / 2}; (pred(mid) ? __ok : __ng) = mid; } return __ok; } // reset all bits. template void reset(A &array) { memset(array, 0, sizeof(array)); } // be careful that val is type-sensitive. template void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); } /* functon utility end */ /* using alias start */ using namespace std; using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using pii = pair; using pll = pair; template > using heap = priority_queue, Comp>; template using hashset = unordered_set; template using hashmap = unordered_map; /* using alias end */ /* library start */ #ifndef Li_Chao_tree_hpp #define Li_Chao_tree_hpp template class Li_Chao_tree { struct line { K slop, incp; line(K a, K b) : slop(a), incp(b) {} K get(const K x) const { return slop * x + incp; } }; // struct line struct node { line ln; node *left, *right; node(const line &l) : ln(l), left(nullptr), right(nullptr) {} ~node() { delete left; delete right; } K get(const K x) const { return ln.get(x); } }; // struct node const K x_min, x_max, eps; using comp_t = std::function; const comp_t comp; const K identity; node *root; // insert a line for the interval [l, r). node *insert(node *const p, const K l, const K r, line ln) { if(not p) return new node(ln); bool lcmp = comp(ln.get(l), p->get(l)); bool rcmp = comp(ln.get(r - eps), p->get(r - eps)); if(lcmp == rcmp) { if(lcmp) p->ln = ln; return p; } if(r - l <= eps) return p; const K mid = (l + r) / 2; if(comp(ln.get(mid), p->get(mid))) { std::swap(p->ln, ln); lcmp = not lcmp; } if(lcmp) p->left = insert(p->left, l, mid, ln); else p->right = insert(p->right, mid, r, ln); return p; } // insert a segment for the interval [l, r). node *insert(node *const p, const K l, const K r, line ln, const K s, const K t) { if(t - eps < l or r - eps < s) return p; const K mid = (l + r) / 2; if(l < s or t < r) { p->left = insert(p->left, l, mid, ln, s, t); p->right = insert(p->right, mid, r, ln, s, t); return p; } if(not p) return new node(ln); bool lcmp = comp(ln.get(l), p->get(l)); bool rcmp = comp(ln.get(r - eps), p->get(r - eps)); if(lcmp == rcmp) { if(lcmp) p->ln = ln; return p; } if(r - l <= eps) return p; if(comp(ln.get(mid), p->get(mid))) { std::swap(p->ln, ln); lcmp = not lcmp; } if(lcmp) p->left = insert(p->left, l, mid, ln, s, t); else p->right = insert(p->right, mid, r, ln, s, t); return p; } public: // domain set to be the interval [x_min, x_max). Li_Chao_tree(const K _x_min, const K _x_max, const K _eps = K(1), const comp_t &_comp = std::less(), const K _identity = std::numeric_limits::max()) : x_min(_x_min), x_max(_x_max), eps(_eps), comp(_comp), identity(_identity), root() {} ~Li_Chao_tree() { delete root; } bool empty() const { return !root; } // insert a line whose slope is p and inception is q. void insert(const K p, const K q) { root = insert(root, x_min, x_max, line(p, q)); } // insert a line(segment) whose slope is p, inception is q, // and domain is the interval [s, t). void insert(const K p, const K q, const K s, const K t) { if(s < t) root = insert(root, x_min, x_max, line(p, q), s, t); } // get the value at x. K query(const K x) const { node *p = root; K l = x_min, r = x_max; K res = identity; while(p) { if(comp(p->get(x), res)) res = p->get(x); if(r - l <= eps) return res; const K mid = (l + r) / 2; if(x < mid) { p = p->left; r = mid; } else { p = p->right; l = mid; } } return res; } }; // class Li_Chao_tree #endif // Li_Chao_tree_hpp /* library end */ /* The main code follows. */ struct solver { solver() { input(int,n); input(vector,a,n); sort(__all(a)); Li_Chao_tree cht(0,2e9+1,1,std::greater(),-1e18); i64 ans=0; i64 lacc=0,racc=0; for(int i=0; i*2> t; // case number given while(t--) { solver(); } }