#include using namespace std; using ll = long long; using PII = pair; #define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i) #define REP(i, n) FOR(i, 0, n) #define ALL(x) x.begin(), x.end() template void chmin(T &a, const T &b) { a = min(a, b); } template void chmax(T &a, const T &b) { a = max(a, b); } struct FastIO {FastIO() { cin.tie(0); ios::sync_with_stdio(0); }}fastiofastio; #ifdef DEBUG_ #include "../program_contest_library/memo/dump.hpp" #else #define dump(...) #endif const ll INF = 1LL<<60; template struct modint { ll x; modint(): x(0) {} modint(ll y) : x(y>=0 ? y%MOD : y%MOD+MOD) {} static constexpr ll mod() { return MOD; } // e乗 modint pow(ll e) { ll a = 1, p = x; while(e > 0) { if(e%2 == 0) {p = (p*p) % MOD; e /= 2;} else {a = (a*p) % MOD; e--;} } return modint(a); } modint inv() const { ll a=x, b=MOD, u=1, y=1, v=0, z=0; while(a) { ll q = b/a; swap(z -= q*u, u); swap(y -= q*v, v); swap(b -= q*a, a); } return z; } // Comparators bool operator <(modint b) { return x < b.x; } bool operator >(modint b) { return x > b.x; } bool operator<=(modint b) { return x <= b.x; } bool operator>=(modint b) { return x >= b.x; } bool operator!=(modint b) { return x != b.x; } bool operator==(modint b) { return x == b.x; } // Basic Operations modint operator+(modint r) const { return modint(*this) += r; } modint operator-(modint r) const { return modint(*this) -= r; } modint operator*(modint r) const { return modint(*this) *= r; } modint operator/(modint r) const { return modint(*this) /= r; } modint &operator+=(modint r) { if((x += r.x) >= MOD) x -= MOD; return *this; } modint &operator-=(modint r) { if((x -= r.x) < 0) x += MOD; return *this; } modint &operator*=(modint r) { #if !defined(_WIN32) || defined(_WIN64) x = x * r.x % MOD; return *this; #endif unsigned long long y = x * r.x; unsigned xh = (unsigned) (y >> 32), xl = (unsigned) y, d, m; asm( "divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (MOD) ); x = m; return *this; } modint &operator/=(modint r) { return *this *= r.inv(); } // increment, decrement modint operator++() { x++; return *this; } modint operator++(signed) { modint t = *this; x++; return t; } modint operator--() { x--; return *this; } modint operator--(signed) { modint t = *this; x--; return t; } // 平方剰余のうち一つを返す なければ-1 friend modint sqrt(modint a) { if(a == 0) return 0; ll q = MOD-1, s = 0; while((q&1)==0) q>>=1, s++; modint z=2; while(1) { if(z.pow((MOD-1)/2) == MOD-1) break; z++; } modint c = z.pow(q), r = a.pow((q+1)/2), t = a.pow(q); ll m = s; while(t.x>1) { modint tp=t; ll k=-1; FOR(i, 1, m) { tp *= tp; if(tp == 1) { k=i; break; } } if(k==-1) return -1; modint cp=c; REP(i, m-k-1) cp *= cp; c = cp*cp, t = c*t, r = cp*r, m = k; } return r.x; } template friend modint operator*(T l, modint r) { return modint(l) *= r; } template friend modint operator+(T l, modint r) { return modint(l) += r; } template friend modint operator-(T l, modint r) { return modint(l) -= r; } template friend modint operator/(T l, modint r) { return modint(l) /= r; } template friend bool operator==(T l, modint r) { return modint(l) == r; } template friend bool operator!=(T l, modint r) { return modint(l) != r; } // Input/Output friend ostream &operator<<(ostream& os, modint a) { return os << a.x; } friend istream &operator>>(istream& is, modint &a) { is >> a.x; a.x = ((a.x%MOD)+MOD)%MOD; return is; } friend string to_frac(modint v) { static map mp; if(mp.empty()) { mp[0] = mp[MOD] = {0, 1}; FOR(i, 2, 1001) FOR(j, 1, i) if(__gcd(i, j) == 1) { mp[(modint(i) / j).x] = {i, j}; } } auto itr = mp.lower_bound(v.x); if(itr != mp.begin() && v.x - prev(itr)->first < itr->first - v.x) --itr; string ret = to_string(itr->second.first + itr->second.second * ((int)v.x - itr->first)); if(itr->second.second > 1) { ret += '/'; ret += to_string(itr->second.second); } return ret; } }; using mint = modint<1000000007>; template struct NTT { void ntt(vector& a, int sign) { const int n = a.size(); assert((n^(n&-n)) == 0); T g = 3; //g is primitive root of mod const ll mod = T::mod(); T h = g.pow((mod-1)/n); // h^n = 1 if(sign == -1) h = h.inv(); //h = h^-1 % mod //bit reverse int i = 0; for (int j = 1; j < n - 1; ++j) { for (int k = n >> 1; k >(i ^= k); k >>= 1); if (j < i) swap(a[i], a[j]); } for (int m = 1; m < n; m *= 2) { const int m2 = 2 * m; const T base = h.pow(n/m2); T w = 1; for(int x=0; x& input) { ntt(input, 1); } void inv_ntt(vector& input) { ntt(input, -1); const T n_inv = T((int)input.size()).inv(); for(auto &x: input) x *= n_inv; } vector convolution(const vector& a, const vector& b) { int sz = 1; while(sz < (int)a.size() + (int)b.size()) sz *= 2; vector a2(a), b2(b); a2.resize(sz); b2.resize(sz); ntt(a2); ntt(b2); for(int i=0; i vector any_mod_convolution(vector a, vector b) { const ll m1 = 167772161, m2 = 469762049, m3 = 1224736769; NTT,3> ntt1; NTT,3> ntt2; NTT,3> ntt3; vector> a1(a.size()), b1(b.size()); vector> a2(a.size()), b2(b.size()); vector> a3(a.size()), b3(b.size()); for(int i=0; i<(int)a.size(); ++i) a1[i] = a[i].x, b1[i] = b[i].x; for(int i=0; i<(int)a.size(); ++i) a2[i] = a[i].x, b2[i] = b[i].x; for(int i=0; i<(int)a.size(); ++i) a3[i] = a[i].x, b3[i] = b[i].x; auto x = ntt1.convolution(a1, b1); auto y = ntt2.convolution(a2, b2); auto z = ntt3.convolution(a3, b3); const ll m1_inv_m2 = 104391568; const ll m12_inv_m3 = 721017874; const ll m12_mod = m1 * m2 % T::mod(); vector ret(x.size()); for(int i=0; i<(int)x.size(); ++i) { ll v1 = (y[i].x-x[i].x) * m1_inv_m2 % m2; if(v1<0) v1 += m2; ll v2 = (z[i].x-(x[i].x+m1*v1)%m3) * m12_inv_m3 % m3; if(v2<0) v2 += m3; ret[i] = x[i].x + m1*v1 + m12_mod*v2; } return ret; } namespace fft { using dbl = long double; struct num { dbl x, y; num() { x = y = 0; } num(dbl x, dbl y) : x(x), y(y) { } }; inline num operator+(num a, num b) { return num(a.x + b.x, a.y + b.y); } inline num operator-(num a, num b) { return num(a.x - b.x, a.y - b.y); } inline num operator*(num a, num b) { return num(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } inline num conj(num a) { return num(a.x, -a.y); } int base = 1; vector roots = {{0, 0}, {1, 0}}; vector rev = {0, 1}; const dbl PI = acosl(-1.0); void ensure_base(int nbase) { if (nbase <= base) return; rev.resize(1 << nbase); for (int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } roots.resize(1 << nbase); while (base < nbase) { dbl angle = 2 * PI / (1 << (base + 1)); for (int i = 1 << (base - 1); i < (1 << base); i++) { roots[i << 1] = roots[i]; dbl angle_i = angle * (2 * i + 1 - (1 << base)); roots[(i << 1) + 1] = num(cos(angle_i), sin(angle_i)); } base++; } } void fft(vector &a, int n = -1) { if (n == -1) n = a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k=1; k fa, fb; vector multiply(vector &a, vector &b) { int need = a.size() + b.size() - 1; int nbase = 0; while ((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; if (sz > (int) fa.size()) fa.resize(sz); for (int i = 0; i < sz; i++) { int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = num(x, y); } fft(fa, sz); num r(0, -0.25 / sz); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); num z = (fa[j] * fa[j] - conj(fa[i] * fa[i])) * r; if (i != j) fa[j] = (fa[i] * fa[i] - conj(fa[j] * fa[j])) * r; fa[i] = z; } fft(fa, sz); vector res(need); for (int i = 0; i < need; i++) res[i] = fa[i].x + 0.5; return res; } template vector multiply_mod(vector &a, vector &b) { int need = a.size() + b.size() - 1; int nbase = 0; while ((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; if (sz > (int) fa.size()) { fa.resize(sz); } for (int i = 0; i < (int) a.size(); i++) { int x = (a[i] % m + m) % m; fa[i] = num(x & ((1 << 15) - 1), x >> 15); } fill(fa.begin() + a.size(), fa.begin() + sz, num {0, 0}); fft(fa, sz); if (sz > (int) fb.size()) { fb.resize(sz); } for (int i = 0; i < (int) b.size(); i++) { int x = (b[i] % m + m) % m; fb[i] = num(x & ((1 << 15) - 1), x >> 15); } fill(fb.begin() + b.size(), fb.begin() + sz, num {0, 0}); fft(fb, sz); dbl ratio = 0.25 / sz; num r2(0, -1); num r3(ratio, 0); num r4(0, -ratio); num r5(0, 1); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); num a1 = (fa[i] + conj(fa[j])); num a2 = (fa[i] - conj(fa[j])) * r2; num b1 = (fb[i] + conj(fb[j])) * r3; num b2 = (fb[i] - conj(fb[j])) * r4; if (i != j) { num c1 = (fa[j] + conj(fa[i])); num c2 = (fa[j] - conj(fa[i])) * r2; num d1 = (fb[j] + conj(fb[i])) * r3; num d2 = (fb[j] - conj(fb[i])) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector res(need); for (int i = 0; i < need; i++) { long long aa = fa[i].x + 0.5; long long bb = fb[i].x + 0.5; long long cc = fa[i].y + 0.5; res[i] = (aa + ((bb % m) << 15) + ((cc % m) << 30)) % m; } return res; } // fft::multiply uses dbl, outputs vector of rounded values // fft::multiply_mod might work for res.size() up to 2^21 // typedef long double dbl; => up to 2^25 (but takes a lot of memory) }; int main(void) { ll p; cin >> p; const int m = 2000000, MOD = 1000000007; vector a(m+1); a[1] = 0, a[2] = 1; FOR(i, 3, m+1) a[i] = (a[i-1]*p%MOD + a[i-2]) % MOD; // auto v = any_mod_convolution(a, a); auto v = fft::multiply_mod(a, a); ll q; cin >> q; while(q--) { ll x; cin >> x; cout << v[x] << endl; } return 0; }