// // Created by yamunaku on 2020/01/31. // #include <bits/stdc++.h> using namespace std; #define rep(i, n) for(int i = 0; i < (n); i++) #define repl(i, l, r) for(int i = (l); i < (r); i++) #define per(i, n) for(int i = ((n)-1); i >= 0; i--) #define perl(i, l, r) for(int i = ((r)-1); i >= (l); i--) #define all(x) (x).begin(),(x).end() #define MOD9 998244353 #define MOD 1000000007 #define IINF 1000000000 #define LINF 1000000000000000000 #define SP <<" "<< #define CYES cout<<"Yes"<<endl #define CNO cout<<"No"<<endl #define CFS cin.tie(0);ios::sync_with_stdio(false) #define CST(x) cout<<fixed<<setprecision(x) using ll = long long; using ld = long double; using vi = vector<int>; using mti = vector<vector<int>>; using vl = vector<ll>; using mtl = vector<vector<ll>>; using pi = pair<int, int>; using pl = pair<ll, ll>; template<typename T> using heap = priority_queue<T, vector<T>, function<bool(const T, const T)>>; template<int mod> struct ModInt{ int x; ModInt() : x(0){} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod){} ModInt &operator+=(const ModInt &p){ if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p){ if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p){ x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p){ *this *= p.inverse(); return *this; } ModInt operator-() const{ return ModInt(-x); } ModInt operator+(const ModInt &p) const{ return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const{ return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const{ return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const{ return ModInt(*this) /= p; } bool operator==(const ModInt &p) const{ return x == p.x; } bool operator!=(const ModInt &p) const{ return x != p.x; } ModInt inverse() const{ int a = x, b = mod, u = 1, v = 0, t; while(b > 0){ t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const{ ModInt ret(1), mul(x); while(n > 0){ if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p){ return os << p.x; } friend istream &operator>>(istream &is, ModInt &a){ int64_t t; is >> t; a = ModInt<mod>(t); return (is); } static int get_mod(){ return mod; } }; namespace FastFourierTransform{ using real = double; struct C{ real x, y; C() : x(0), y(0){} C(real x, real y) : x(x), y(y){} inline C operator+(const C &c) const{ return C(x + c.x, y + c.y); } inline C operator-(const C &c) const{ return C(x - c.x, y - c.y); } inline C operator*(const C &c) const{ return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const{ return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector<C> rts = {{0, 0}, {1, 0}}; vector<int> rev = {0, 1}; void ensure_base(int nbase){ if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++){ rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while(base < nbase){ real angle = PI * 2.0 / (1 << (base + 1)); for(int i = 1 << (base - 1); i < (1 << base); i++){ rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector<C> &a, int n){ assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++){ if(i < (rev[i] >> shift)){ swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1){ for(int i = 0; i < n; i += 2 * k){ for(int j = 0; j < k; j++){ C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector<int64_t> multiply(const vector<int> &a, const vector<int> &b){ int need = (int) a.size() + (int) b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector<C> fa(sz); for(int i = 0; i < sz; i++){ int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for(int i = 0; i <= (sz >> 1); i++){ int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for(int i = 0; i < (sz >> 1); i++){ C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector<int64_t> ret(need); for(int i = 0; i < need; i++){ ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; template<typename T> struct ArbitraryModConvolution{ using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolution() = default; vector<T> multiply(const vector<T> &a, const vector<T> &b, int need = -1){ if(need == -1) need = a.size() + b.size() - 1; int nbase = 0; while((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector<C> fa(sz); for(int i = 0; i < a.size(); i++){ fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15); } fft(fa, sz); vector<C> fb(sz); if(a == b){ fb = fa; }else{ for(int i = 0; i < b.size(); i++){ fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for(int i = 0; i <= (sz >> 1); i++){ int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if(i != j){ C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector<T> ret(need); for(int i = 0; i < need; i++){ int64_t aa = llround(fa[i].x); int64_t bb = llround(fb[i].x); int64_t cc = llround(fa[i].y); aa = T(aa).x, bb = T(bb).x, cc = T(cc).x; ret[i] = aa + (bb << 15) + (cc << 30); } return ret; } }; int main(){ // CFS; ModInt<MOD> p; cin >> p; vector<ModInt<MOD>> a(2000010); a[0] = 0, a[1] = 1; repl(i, 2, 2000010){ a[i] = p * a[i - 1] + a[i - 2]; } ArbitraryModConvolution<ModInt<MOD>> amc; vector<ModInt<MOD>> ans = amc.multiply(a, a); int q; cin >> q; rep(i, q){ ll x; cin >> x; x -= 2; cout << ans[x] << endl; } return 0; }