class Node
  attr_accessor :parent, :rank
 
  def initialize
    @parent = -1 # Positive value means its parent,and Negative value means its size.
    @rank = 0
  end
end
 
class UnionFindTree
  def initialize(n)
    @nodes = (0...n).to_a.map { |i| Node.new }
  end
 
  def find(x)
    return @nodes[x].parent < 0 ? x : @nodes[x].parent = find(@nodes[x].parent)
  end
 
  def unite(a, b)
    a = find(a)
    b = find(b)
    return if a == b
 
    if @nodes[a].rank < @nodes[b].rank
      @nodes[b].parent += @nodes[a].parent
      @nodes[a].parent = b
    else
      @nodes[a].parent += @nodes[b].parent
      @nodes[b].parent = a
      @nodes[a].rank += 1 if @nodes[a].rank == @nodes[b].rank
    end
  end
 
  def same?(a, b)
    find(a) == find(b)
  end
  
  def size(a)
    -@nodes[find(a)].parent
  end
 
  # 確認用。アルゴリズムとは関係無い
  def parents
    @nodes.map(&:parent)
  end
end
 
# N, M = gets.split.map(&:to_i)
 
class Bridge
  attr_accessor :first, :second
 
  def initialize
    @first = nil
    @second = nil
  end
  
  def nodes=(a)
    a[0], a[1] = a[1], a[0] if a[0] > a[1]
    @first = a[0]
    @second = a[1]
  end
  
end

n = gets.to_i
# n, q = gets.split.map(&:to_i)

g = Array.new(n){[]}
uft = UnionFindTree.new(n)
(n-1).times do |i|
  
  x,y = gets.split.map(&:to_i)
  
#   if com == 0
    uft.unite(x, y)
    g[x] << y
    g[y] << x
#   else
    # puts uft.same?(x, y) ? 1 : 0
#   end
end

z = g.map{|k| k.size}


if uft.size(0) == n or uft.size(1) == n
    puts "Bob"
elsif z.count(0) == 1 and (z.count(2) == n-1 and (uft.size(0)==n-1 or uft.size(1)==n-1))
    puts "Bob"
else
    puts "Alice"
end