class mint: def __init__(self, x): self.__x = x % md def __str__(self): return str(self.__x) def __add__(self, other): if isinstance(other, mint): other = other.__x return mint(self.__x + other) def __sub__(self, other): if isinstance(other, mint): other = other.__x return mint(self.__x - other) def __rsub__(self, other): return mint(other - self.__x) def __mul__(self, other): if isinstance(other, mint): other = other.__x return mint(self.__x * other) __radd__ = __add__ __rmul__ = __mul__ def __truediv__(self, other): if isinstance(other, mint): other = other.__x return mint(self.__x * pow(other, md - 2, md)) def __pow__(self, power, modulo=None): return mint(pow(self.__x, power, md)) class Fibonacci: def __init__(self): coff = [1,1,0] self.f0 = [1,2,2] # 上2つは問題ごとに手作業で設定 # af(n)+bf(n+1)+cf(n+2)+df(n+3)=f(n+4)みたいなとき # coff=[a,b,c,d] # 初期値f0(f(0)からf(3)) n = len(coff) ff = [[0] * n for _ in range(2 * n - 1)] for i in range(n): ff[i][i] = mint(1) for i in range(n, 2 * n - 1): ffi = ff[i] for j, c in enumerate(coff, i - n): ffj = ff[j] for k in range(n): ffi[k] += c * ffj[k] self.bn = 1 << (n - 1).bit_length() self.base = ff[self.bn] self.ff = ff self.n = n def __mm(self, aa, bb): n = self.n res = [0] * (n * 2 - 1) for i, a in enumerate(aa): for j, b in enumerate(bb): res[i + j] += a * b for i in range(n, 2 * n - 1): c = res[i] ffi = self.ff[i] for j in range(n): res[j] += c * ffi[j] return res[:n] def v(self, x): base = self.base aa = self.ff[x % self.bn] x //= self.bn while x: if x & 1: aa = self.__mm(aa, base) base = self.__mm(base, base) x >>= 1 return sum(a * f for a, f in zip(aa, self.f0)) md = 10**9+7 def main(): n=int(input()) f=Fibonacci() print(f.v(n-1)) main()