#include #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wsign-conversion" using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; using uint = unsigned int; using usize = std::size_t; using ll = long long; using ull = unsigned long long; using ld = long double; template using arr = T (&)[n]; template using c_arr = const T (&)[n]; template using max_heap = std::priority_queue; template using min_heap = std::priority_queue, std::greater>; template constexpr T popcount(const T u) { return u ? static_cast(__builtin_popcountll(static_cast(u))) : static_cast(0); } template constexpr T log2p1(const T u) { return u ? static_cast(64 - __builtin_clzll(static_cast(u))) : static_cast(0); } template constexpr T msbp1(const T u) { return log2p1(u); } template constexpr T lsbp1(const T u) { return __builtin_ffsll(u); } template constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast(u); } template constexpr bool ispow2(const T u) { return u and (static_cast(u) & static_cast(u - 1)) == 0; } template constexpr T ceil2(const T u) { return static_cast(1) << clog(u); } template constexpr T floor2(const T u) { return u == 0 ? static_cast(0) : static_cast(1) << (log2p1(u) - 1); } template constexpr bool btest(const T mask, const usize ind) { return static_cast((static_cast(mask) >> ind) & static_cast(1)); } template void bset(T& mask, const usize ind) { mask |= (static_cast(1) << ind); } template void breset(T& mask, const usize ind) { mask &= ~(static_cast(1) << ind); } template void bflip(T& mask, const usize ind) { mask ^= (static_cast(1) << ind); } template void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); } template constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast(0) : static_cast((static_cast(mask) << (64 - ind)) >> (64 - ind)); } template bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); } template bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); } constexpr unsigned int mod = 1000000007; template constexpr T inf_v = std::numeric_limits::max() / 4; template constexpr Real pi_v = Real{3.141592653589793238462643383279502884}; auto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward(args)...); }; }; template T in() { T v; return std::cin >> v, v; } template T in_v(typename std::enable_if<(i == n), c_arr>::type) { return in(); } template auto in_v(typename std::enable_if<(i < n), c_arr>::type& szs) { const usize s = (usize)szs[i]; std::vector(szs))> ans(s); for (usize j = 0; j < s; j++) { ans[j] = in_v(szs); } return ans; } template auto in_v(c_arr szs) { return in_v(szs); } template auto in_t() { return std::tuple...>{in()...}; } struct io_init { io_init() { std::cin.tie(nullptr), std::ios::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(20); } void clear() { std::cin.tie(), std::ios::sync_with_stdio(true); } } io_setting; int out() { return 0; } template int out(const T& v) { return std::cout << v, 0; } template int out(const std::vector& v) { for (usize i = 0; i < v.size(); i++) { if (i > 0) { std::cout << ' '; } out(v[i]); } return 0; } template int out(const std::pair& v) { return out(v.first), std::cout << ' ', out(v.second), 0; } template int out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; } template int outln(const Args... args) { return out(args...), std::cout << '\n', 0; } template int outel(const Args... args) { return out(args...), std::cout << std::endl, 0; } # define SHOW(...) static_cast(0) constexpr ull TEN(const usize n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; } template auto make_v(typename std::enable_if<(i == n), c_arr>::type, const T& v = T{}) { return v; } template auto make_v(typename std::enable_if<(i < n), c_arr>::type szs, const T& v = T{}) { const usize s = (usize)szs[i]; return std::vector(szs, v))>(s, make_v(szs, v)); } template auto make_v(c_arr szs, const T& t = T{}) { return make_v(szs, t); } template T gcd(const T& a, const T& b) { return a < 0 ? gcd(-a, b) : b < 0 ? gcd(a, -b) : (a > b ? gcd(b, a) : a == 0 ? b : gcd(b % a, a)); } template T lcm(const T& a, const T& b) { return a / gcd(a, b) * b; } template constexpr std::pair extgcd(const T a, const T b) { if (b == 0) { return std::pair{1, 0}; } const auto g = gcd(a, b), da = std::abs(b) / g; const auto p = extgcd(b, a % b); const auto x = (da + p.second % da) % da, y = (g - a * x) / b; return {x, y}; } template constexpr T inverse(const T a, const T mod) { return extgcd(a, mod).first; } template class modint_base { public: template static std::enable_if_t mod() { return mod_ref(); } template static constexpr std::enable_if_t mod() { return mod_value; } template static void set_mod(const std::enable_if_t mod) { mod_ref() = mod, inv_ref() = {1, 1}; } modint_base() : v{0} {} modint_base(const ll val) : v{norm(static_cast(val % static_cast(mod()) + static_cast(mod())))} {} modint_base(const modint_base& n) : v{n()} {} explicit operator bool() const { return v != 0; } bool operator!() const { return not static_cast(*this); } modint_base& operator=(const modint_base& m) { return v = m(), (*this); } modint_base& operator=(const ll val) { return v = norm(uint(val % static_cast(mod()) + static_cast(mod()))), (*this); } friend modint_base operator+(const modint_base& m) { return m; } friend modint_base operator-(const modint_base& m) { return make(norm(mod() - m.v)); } friend modint_base operator+(const modint_base& m1, const modint_base& m2) { return make(norm(m1.v + m2.v)); } friend modint_base operator-(const modint_base& m1, const modint_base& m2) { return make(norm(m1.v + mod() - m2.v)); } friend modint_base operator*(const modint_base& m1, const modint_base& m2) { return make(static_cast(static_cast(m1.v) * static_cast(m2.v) % static_cast(mod()))); } friend modint_base operator/(const modint_base& m1, const modint_base& m2) { return m1 * inv(m2.v); } friend modint_base operator+(const modint_base& m, const ll val) { return modint_base{static_cast(m.v) + val}; } friend modint_base operator-(const modint_base& m, const ll val) { return modint_base{static_cast(m.v) - val}; } friend modint_base operator*(const modint_base& m, const ll val) { return modint_base{static_cast(m.v) * (val % static_cast(mod()))}; } friend modint_base operator/(const modint_base& m, const ll val) { return modint_base{static_cast(m.v) * inv(val)}; } friend modint_base operator+(const ll val, const modint_base& m) { return modint_base{static_cast(m.v) + val}; } friend modint_base operator-(const ll val, const modint_base& m) { return modint_base{-static_cast(m.v) + val}; } friend modint_base operator*(const ll val, const modint_base& m) { return modint_base{static_cast(m.v) * (val % static_cast(mod()))}; } friend modint_base operator/(const ll val, const modint_base& m) { return modint_base{val * inv(static_cast(m.v))}; } friend modint_base& operator+=(modint_base& m1, const modint_base& m2) { return m1 = m1 + m2; } friend modint_base& operator-=(modint_base& m1, const modint_base& m2) { return m1 = m1 - m2; } friend modint_base& operator*=(modint_base& m1, const modint_base& m2) { return m1 = m1 * m2; } friend modint_base& operator/=(modint_base& m1, const modint_base& m2) { return m1 = m1 / m2; } friend modint_base& operator+=(modint_base& m, const ll val) { return m = m + val; } friend modint_base& operator-=(modint_base& m, const ll val) { return m = m - val; } friend modint_base& operator*=(modint_base& m, const ll val) { return m = m * val; } friend modint_base& operator/=(modint_base& m, const ll val) { return m = m / val; } friend modint_base operator^(const modint_base& m, const ll n) { return power(m.v, n); } friend modint_base& operator^=(modint_base& m, const ll n) { return m = m ^ n; } friend bool operator==(const modint_base& m1, const modint_base& m2) { return m1.v == m2.v; } friend bool operator!=(const modint_base& m1, const modint_base& m2) { return not(m1 == m2); } friend bool operator==(const modint_base& m, const ll val) { return m.v == norm(static_cast(static_cast(mod()) + val % static_cast(mod()))); } friend bool operator!=(const modint_base& m, const ll val) { return not(m == val); } friend bool operator==(const ll val, const modint_base& m) { return m.v == norm(static_cast(static_cast(mod()) + val % static_cast(mod()))); } friend bool operator!=(const ll val, const modint_base& m) { return not(m == val); } friend std::istream& operator>>(std::istream& is, modint_base& m) { ll v; return is >> v, m = v, is; } friend std::ostream& operator<<(std::ostream& os, const modint_base& m) { return os << m(); } uint operator()() const { return v; } static modint_base small_inv(const usize n) { auto& in = inv_ref(); if (n < in.size()) { return in[n]; } for (usize i = in.size(); i <= n; i++) { in.push_back(-in[modint_base::mod() % i] * (modint_base::mod() / i)); } return in.back(); } std::pair quad() const { const auto ans = quad_r(v, mod()); ll x = std::get<0>(ans), y = std::get<1>(ans); if (y < 0) { x = -x, y = -y; } return {x, y}; } private: static std::tuple quad_r(const ll r, const ll p) // r = x/y (mod p), (x,y,z) s.t. x=yr+pz { if (std::abs(r) <= 1000) { return {r, 1, 0}; } ll nr = p % r, q = p / r; if (nr * 2LL >= r) { nr -= r, q++; } if (nr * 2LL <= -r) { nr += r, q--; } const auto sub = quad_r(nr, r); const ll x = std::get<0>(sub), z = std::get<1>(sub), y = std::get<2>(sub); return {x, y - q * z, z}; } template static std::enable_if_t mod_ref() { static UInt mod = 0; return mod; } static uint norm(const uint x) { return x < mod() ? x : x - mod(); } static modint_base make(const uint x) { modint_base m; return m.v = x, m; } static modint_base power(modint_base x, ull n) { modint_base ans = 1; for (; n; n >>= 1, x *= x) { if (n & 1) { ans *= x; } } return ans; } static modint_base inv(const ll v) { return v <= 2000000 ? small_inv(static_cast(v)) : modint_base{inverse(v, static_cast(mod()))}; } static std::vector& inv_ref() { static std::vector in{1, 1}; return in; } uint v; }; template using modint = modint_base; template using dynamic_modint = modint_base; class xoshiro { public: using result_type = uint32_t; static constexpr result_type min() { return std::numeric_limits::min(); } static constexpr result_type max() { return std::numeric_limits::max(); } xoshiro() : xoshiro(std::random_device{}()) {} xoshiro(uint64_t seed) { uint64_t z = 0; for (int i = 0; i < 4; i++) { z = (seed += 0x9e3779b97f4a7c15), z = (z ^ (z >> 33)) * 0x62A9D9ED799705F5, z = (z ^ (z >> 28)) * 0xCB24D0A5C88C35B3, s[i] = static_cast(z >> 32); } } result_type operator()() { const result_type result = rotl(s[1] * 5, 7) * 9, t = s[1] << 9; return s[2] ^= s[0], s[3] ^= s[1], s[1] ^= s[2], s[0] ^= s[3], s[2] ^= t, s[3] = rotl(s[3], 11), result; } void discard(const usize rep) { for (usize i = 0; i < rep; i++) { (*this)(); } } private: result_type s[4]; static result_type rotl(const result_type x, const int k) { return (x << k) | (x >> (32 - k)); } }; class xoshiro_64 { public: using result_type = uint64_t; static constexpr result_type min() { return std::numeric_limits::min(); } static constexpr result_type max() { return std::numeric_limits::max(); } xoshiro_64() : xoshiro_64(std::random_device{}()) {} xoshiro_64(uint64_t seed) { uint64_t z = 0; for (int i = 0; i < 4; i++) { z = (seed += 0x9e3779b97f4a7c15), z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9, z = (z ^ (z >> 27)) * 0x94d049bb133111eb, s[i] = static_cast(z ^ (z >> 31)); } } result_type operator()() { const result_type result = rotl(s[1] * 5, 7) * 9, t = s[1] << 17; return s[2] ^= s[0], s[3] ^= s[1], s[1] ^= s[2], s[0] ^= s[3], s[2] ^= t, s[3] = rotl(s[3], 45), result; } void discard(const usize rep) { for (usize i = 0; i < rep; i++) { (*this)(); } } private: result_type s[4]; static result_type rotl(const result_type x, const int k) { return (x << k) | (x >> (64 - k)); } }; template class rng_base { public: using rng_type = Rng; using result_type = typename rng_type::result_type; static constexpr result_type min() { return rng_type::min(); } static constexpr result_type max() { return rng_type::max(); } rng_base() : rng_base(std::random_device{}()) {} rng_base(const u64 seed) : rng(seed) {} ~rng_base() = default; result_type operator()(const result_type max = std::numeric_limits::max()) { if (max == std::numeric_limits::max()) { return static_cast(rng()); } if (ispow2(max + 1)) { return static_cast(rng() & max); } const result_type mask = static_cast(ceil2(static_cast(max + 1))) - 1; while (true) { const result_type ans = static_cast(rng() & mask); if (ans <= max) { return ans; } } } template Int operator()(const Int min, const Int max) { return min + (Int)(*this)(max - min); } operator bool() { return (bool)(*this)(0, 1); } template std::pair pair(const Int min, const Int max) { return std::pair{*this(min, max), *this(min, max)}; } template std::vector vec(const usize n, const Int min, const Int max) { std::vector v(n); for (usize i = 0; i < n; i++) { v[i] = (*this)(min, max); } return v; } std::vector perm(const usize n) { std::vector ans(n); std::iota(ans.begin(), ans.end(), 0UL); std::shuffle(ans.begin(), ans.end(), rng); return ans; } private: Rng rng; }; using rng_mt = rng_base; using rng_mt64 = rng_base; using rng_xoshiro = rng_base; using rng_xoshiro64 = rng_base; rng_mt g_rng_mt; rng_mt64 g_rng_mt64; rng_xoshiro g_rng_xo; rng_xoshiro64 g_rng_xo64; template inline bool miller_rabin(const T& n, const std::vector& as) { auto pow = [&](auto&& self, const V& a, const T k) -> V { if (k == 0) { return 1; } if (k % 2 == 0) { return self(self, (a * a) % V(n), k / 2); } else { return (self(self, a, k - 1) * a) % V(n); } }; T d = n - 1; for (; (d & 1) == 0; d >>= 1) {} for (const T& a : as) { if (n <= a) { break; } T s = d; V x = pow(pow, a, s); while (x != 1 and x != n - 1 and s != n - 1) { (x *= x) %= V(n); s *= 2; } if (x != n - 1 and s % 2 == 0) { return false; } } return true; } template inline bool is_prime(const T& n, const usize trial) { if (n % 2 == 0) { return n == 2; } std::vector as(trial); for (usize i = 0; i < trial; i++) { as[i] = static_cast(g_rng_xo64(T{2}, n - 2)); } return miller_rabin(n, as); } inline bool is_prime(const ull n) { if (n % 2 == 0) { return n == 2; } if (n < (1ULL << 32)) { return miller_rabin((uint)n, std::vector{2, 7, 61}); } else { return miller_rabin(n, std::vector{2, 325, 9375, 28178, 450775, 9780504}); } } template T pollard_rho(const T n) { if (n % 2 == 0) { return 2; } if (is_prime(n)) { return n; } for (T c = 1; c < n; c++) { if (c == n - 2) { continue; } auto f = [&](const T x) -> T { return T((V(x) * V(x) + V(c)) % V(n)); }; T x = 2, y = 2, d = 1; while (d == 1) { x = f(x), y = f(f(y)); d = gcd(std::max(x, y) - std::min(x, y), n); } if (d != n) { return d; } } return n; } std::map prime_factors(const ull n) { std::map ans; auto factor = [&](auto&& self, const ull n) -> void { if (n == 1) { return; } const ull p = (n < (1ULL << 32)) ? (ull)pollard_rho((uint)n) : pollard_rho(n); if (p == n) { ans[p]++; return; } self(self, p); self(self, n / p); }; factor(factor, n); return ans; } template std::pair crt(const std::pair& a1, const std::pair& a2) { using P = std::pair; T r1 = a1.first, m1 = a1.second, r2 = a2.first, m2 = a2.second; const T g = gcd(m1, m2); if (r1 % g != r2 % g) { return P{0, 0}; } const T m = m1 / g * m2; if (r1 == r2) { return {r1, m}; } const auto k1 = extgcd(m1, m2).first * ((r2 - r1) / g) % (m2 / g); return P{(m + (m1 * k1 % m) + r1) % m, m}; } template std::pair crt(const InIt first, const InIt last) { using P = std::pair; return std::accumulate(first, last, P{0, 1}, [](const P& a1, const P& a2) -> P { return crt(a1, a2); }); } using namespace std; template class UnorderedMapIterator; template, bool DOWNSIZE = false> class UnorderedMap { private: using iterator = UnorderedMapIterator<_Key, _Tp, _Hash, DOWNSIZE>; using value_type = _Tp; using data_type = pair<_Key, _Tp>; using aligned_pointer = typename aligned_storage::type; friend UnorderedMapIterator<_Key, _Tp, _Hash, DOWNSIZE>; struct bucket { _Key _key; short int _dist; bool _last, _end; aligned_pointer _value_ptr; bucket() noexcept : _dist(-1), _last(false), _end(false) {} bucket& operator=(const bucket& another) noexcept { _key = another._key, _dist = another._dist, _last = another._last, _end = another._end; if (!another.empty()) { new (&_value_ptr) value_type(*reinterpret_cast(&another._value_ptr)); } return *this; } ~bucket() { if (!empty()) _delete(); } inline void clear() noexcept { _dist = -1; } inline void _delete() { _dist = -1, value_ptr()->~value_type(); } inline bool empty() const noexcept { return (_dist == -1); } inline value_type& value() noexcept { return *reinterpret_cast(&_value_ptr); } inline value_type* value_ptr() noexcept { return reinterpret_cast(&_value_ptr); } inline void new_value(value_type&& value) { new (&_value_ptr) value_type(move(value)); } }; inline static unsigned int ceilpow2(unsigned int u) noexcept { if (u == 0u) return 0u; --u, u |= u >> 1, u |= u >> 2, u |= u >> 4, u |= u >> 8; return (u | (u >> 16)) + 1u; } inline static bucket* increment(bucket* cur) noexcept { for (++cur; !cur->_end; ++cur) { if (!cur->empty()) break; } return cur; } inline bucket* next_bucket(bucket* cur) const noexcept { return cur->_last ? _buckets : cur + 1; } inline unsigned int make_hash(const _Key& key) const noexcept { return _Hash()(key); } inline float load_rate() const noexcept { return (float)_data_count / _bucket_count; } bucket* insert(bucket* cur, _Key&& key, short int dist, value_type&& value) { bucket* ret = cur; bool flag = false; while (true) { if (cur->empty()) { cur->_key = move(key), cur->_dist = dist, cur->new_value(move(value)); if (!flag) ret = cur, flag = true; break; } else if (dist > cur->_dist) { swap(key, cur->_key), swap(dist, cur->_dist), swap(value, cur->value()); if (!flag) ret = cur, flag = true; } ++dist; cur = next_bucket(cur); } return ret; } template bucket* _find(Key&& key, bool push = false) { unsigned int hash = make_hash(key); bucket* cur = _buckets + (hash & _mask); short int dist = 0; while (dist <= cur->_dist) { if (key == cur->_key) return cur; ++dist, cur = next_bucket(cur); } if (!push) return _buckets + _bucket_count; ++_data_count; if (rehash_check()) { cur = _buckets + (hash & _mask), dist = 0; } value_type new_value = value_type(); _Key new_key = forward(key); return insert(cur, move(new_key), dist, move(new_value)); } template bucket* find_insert(Data&& data) { const _Key& key = data.first; unsigned int hash = make_hash(key); bucket* cur = _buckets + (hash & _mask); short int dist = 0; while (dist <= cur->_dist) { if (key == cur->_key) return cur; ++dist, cur = next_bucket(cur); } ++_data_count; if (rehash_check()) { cur = _buckets + (hash & _mask), dist = 0; } data_type new_data = forward(data); return insert(cur, move(new_data.first), dist, move(new_data.second)); } template bucket* emplace(Args&&... args) { return find_insert(data_type(forward(args)...)); } bucket* backward_shift(bucket* cur, bool next_ret) { bucket *next = next_bucket(cur), *ret = cur; if (next->_dist < 1) return next_ret ? increment(cur) : cur; do { cur->_key = next->_key, cur->_dist = next->_dist - 1; cur->new_value(move(next->value())); cur = next, next = next_bucket(cur); } while (next->_dist >= 1); cur->clear(); return ret; } bucket* erase_impl(bucket* cur, bool next_ret) { assert(static_cast(cur - _buckets) != _bucket_count); cur->_delete(); --_data_count; return backward_shift(cur, next_ret); } bucket* erase_itr(bucket* cur, bool next_ret = true) { const _Key key = cur->_key; return erase_impl(rehash_check() ? _find(key) : cur, next_ret); } bucket* erase_key(const _Key& key, bool next_ret = true) { rehash_check(); return erase_impl(_find(key), next_ret); } bool rehash_check() { if (_bucket_count == 0) { rehash(1u); return true; } else if (load_rate() >= MAX_LOAD_RATE) { rehash(_bucket_count * 2u); return true; } else if (DOWNSIZE) { if (load_rate() <= MIN_LOAD_RATE && _bucket_count >= DOWNSIZE_THRESHOLD) { rehash(_bucket_count / 2u); return true; } } return false; } void move_data(bucket* cur) { insert(_buckets + (make_hash(cur->_key) & _mask), move(cur->_key), 0, move(cur->value())); } void rehash(unsigned int new_bucket_count) { UnorderedMap new_unordered_map(new_bucket_count); new_unordered_map._data_count = _data_count; for (bucket* cur = _buckets; !cur->_end; ++cur) { if (!cur->empty()) { new_unordered_map.move_data(cur); } } swap(*this, new_unordered_map); } friend void swap(UnorderedMap& ump1, UnorderedMap& ump2) { swap(ump1._bucket_count, ump2._bucket_count); swap(ump1._mask, ump2._mask); swap(ump1._data_count, ump2._data_count); swap(ump1._buckets, ump2._buckets); } private: unsigned int _bucket_count, _mask, _data_count; bucket* _buckets; public: const float MAX_LOAD_RATE = 0.5f; const float MIN_LOAD_RATE = 0.1f; const unsigned int DOWNSIZE_THRESHOLD = 16u; UnorderedMap(unsigned int bucket_size = 0u) : _bucket_count(ceilpow2(bucket_size)), _mask(_bucket_count - 1), _data_count(0u), _buckets(new bucket[_bucket_count + 1]) { if (_bucket_count > 0) _buckets[_bucket_count - 1]._last = true; else _mask = 0; _buckets[_bucket_count]._end = true; } UnorderedMap(const UnorderedMap& another) : _bucket_count(another._bucket_count), _mask(another._mask), _data_count(another._data_count) { _buckets = new bucket[_bucket_count + 1u]; for (unsigned int i = 0u; i <= _bucket_count; ++i) { _buckets[i] = another._buckets[i]; } } UnorderedMap(UnorderedMap&& another) : _bucket_count(move(another._bucket_count)), _mask(move(another._mask)), _data_count(move(another._data_count)), _buckets(another._buckets) { another._buckets = nullptr; } UnorderedMap& operator=(const UnorderedMap& another) { delete[] _buckets; _bucket_count = another._bucket_count; _mask = another._mask; _data_count = another._data_count; _buckets = new bucket[_bucket_count + 1u]; for (unsigned int i = 0u; i <= _bucket_count; ++i) { _buckets[i] = another._buckets[i]; } return *this; } UnorderedMap& operator=(UnorderedMap&& another) { delete[] _buckets; _bucket_count = move(another._bucket_count); _mask = move(another._mask); _data_count = move(another._data_count); _buckets = another._buckets; another._buckets = nullptr; return *this; } void allocate(unsigned int element_size) { rehash(ceilpow2(ceil(element_size / MAX_LOAD_RATE) + 1)); } ~UnorderedMap() { delete[] _buckets; } friend ostream& operator<<(ostream& os, UnorderedMap& ump) noexcept { for (auto val : ump) os << '{' << val.first << ',' << val.second << "} "; return os; } _Tp& operator[](const _Key& key) { return _find(key, true)->value(); } _Tp& operator[](_Key&& key) { return _find(move(key), true)->value(); } const _Tp& at(const _Key& key) { bucket* res = _find(key); if (res == _buckets + _bucket_count) __throw_out_of_range(__N("Unordered_Map::at")); return res->value(); } void clear() { UnorderedMap new_unordered_map(1u); swap(*this, new_unordered_map); } size_t size() const noexcept { return _data_count; } size_t bucket_count() const noexcept { return _bucket_count; } bool empty() const noexcept { return (_data_count == 0); } iterator begin() noexcept { return (_buckets->empty() && _bucket_count > 0) ? iterator(increment(_buckets)) : iterator(_buckets); } iterator end() noexcept { return iterator(_buckets + _bucket_count); } iterator find(const _Key& key) { return iterator(_find(key)); } iterator insert(const data_type& data) { return iterator(find_insert(data)); } iterator insert(data_type&& data) { return iterator(find_insert(move(data))); } template iterator emplace(Args&&... args) { return iterator(_emplace(forward(args)...)); } iterator erase(const _Key& key) { return iterator(erase_key(key)); } iterator erase(const iterator& itr) { return iterator(erase_itr(itr.bucket_ptr)); } void simple_erase(const _Key& key) { erase_key(key, false); } void simple_erase(const iterator& itr) { erase_itr(itr.bucket_ptr, false); } // DEBUG 用 short int maximum_distance() const noexcept { short int ret = -1; for (bucket* cur = _buckets; !cur->_end; ++cur) { ret = max(ret, cur->_dist); } return ret; } }; template class UnorderedMapIterator { private: friend UnorderedMap<_Key, _Tp, _Hash, DOWNSIZE>; typename UnorderedMap<_Key, _Tp, _Hash, DOWNSIZE>::bucket* bucket_ptr; using iterator_category = forward_iterator_tag; using value_type = pair; using difference_type = ptrdiff_t; using reference = pair; private: UnorderedMapIterator(typename UnorderedMap<_Key, _Tp, _Hash, DOWNSIZE>::bucket* _bucket_ptr) noexcept : bucket_ptr(_bucket_ptr) {} public: UnorderedMapIterator() noexcept : bucket_ptr() {} UnorderedMapIterator(const UnorderedMapIterator& itr) noexcept : bucket_ptr(itr.bucket_ptr) {} UnorderedMapIterator& operator=(const UnorderedMapIterator& itr) & noexcept { return bucket_ptr = itr.bucket_ptr, *this; } UnorderedMapIterator& operator=(const UnorderedMapIterator&& itr) & noexcept { return bucket_ptr = itr.bucket_ptr, *this; } reference operator*() const noexcept { return {bucket_ptr->_key, bucket_ptr->value()}; } UnorderedMapIterator& operator++() noexcept { return bucket_ptr = UnorderedMap<_Key, _Tp, _Hash, DOWNSIZE>::increment(bucket_ptr), *this; } UnorderedMapIterator operator++(int) const noexcept { return UnorderedMapIterator(UnorderedMap<_Key, _Tp, _Hash, DOWNSIZE>::increment(this->bucket_ptr)); } bool operator==(const UnorderedMapIterator& itr) const noexcept { return !(*this != itr); }; bool operator!=(const UnorderedMapIterator& itr) const noexcept { return bucket_ptr != itr.bucket_ptr; } }; template class discrete_log { public: discrete_log(const Ring x, const ull period, const ull query) : x{x}, period{period} { for (; bs * bs * query < period; bs++) {} Ring y = x ^ 0; const Ring z = x ^ bs; for (ull i = 0; i * bs < period; i++) { giant[y()] = i * bs, y *= z; } } ull operator()(Ring y) { for (ull i = 0; i < bs; i++) { if (giant.find(y()) != giant.end()) { return (giant[y()] + period - i) % period; } y = y * x; } return period; } private: const Ring x; ull period; ull bs = 1; UnorderedMap giant; }; int main() { using mint = dynamic_modint<0>; const auto T = in(); for (int t = 0; t < T; t++) { const auto p = in(); const auto k = in(); mint::set_mod(p); const auto a = in(); const auto fs = prime_factors(p - 1); mint g = 2; for (;; g += 1) { bool ok = true; for (const auto& f : fs) { const uint q = p / f.first; if ((g ^ q) == 1) { ok = false; break; } } if (ok) { break; } } discrete_log dlog(g, p - 1, 1); const ull l = dlog(a); // y = l (mod p-1) if ((g ^ l) != a) { outln(-1); continue; } using pll = std::pair; const auto y = crt(pll{l, p - 1}, pll{0LL, k}); const auto z = y.first / k; const auto ans = g ^ z; if ((ans ^ k) == a) { outln(ans); } else { outln(-1); } } return 0; }