#[allow(unused_macros)] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); let mut next = || { iter.next().unwrap() }; input_inner!{next, $($r)*} }; ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } #[allow(unused_macros)] macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } #[allow(unused_macros)] macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::>() }; ($next:expr, bytes) => { read_value!($next, String).into_bytes() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } use std::cmp::Ordering; use std::cmp; use std::cmp::min; use std::collections::BTreeMap; use std::process; use std::cmp::Ord; use std::collections::HashMap; use std::collections::HashSet; use std::collections::VecDeque; use std::collections::BTreeSet; use std::mem; use std::collections::BinaryHeap; /// Equivalent to std::lowerbound and std::upperbound in c++ fn matmul(A:&Vec>, B:&Vec>) -> Vec>{ let mut C = vec![vec![0;B[0].len()];A.len()]; for i in 0..A.len(){ for k in 0..B.len(){ for j in 0..B[0].len(){ C[i][j] += A[i][k]*B[k][j]; C[i][j] %= MOD; } } } return C; } fn matpow(A:&mut Vec>, n:usize) -> Vec>{ let mut B = vec![vec![0;A.len()];A.len()]; for i in 0..A.len(){ B[i][i] = 1; } let mut n = n; let mut tmp = A.clone(); while(n>0){ if n&1 == 1{B = matmul(&B, &tmp);} tmp = matmul(&tmp, &tmp); n>>=1; } return B; } /* subset enumeration let mut set; let mut subset = set; for sm2 in 0..1<>, dp:&mut Vec>)->i64{ let mut res = 1; for i in 0..g[s].len(){ let e = g[s][i]; if e != bef{ dp[s][i] = dfs(e, s, m, g, dp); res *= (1 + dp[s][i]); res %= m; } } return res; } let tmp = dfs(0, n, m, &g, &mut dp); fn dfs2(s:usize, bef:usize, p:i64, m:i64, g:&Vec>, dp:&mut Vec>){ for i in 0..g[s].len(){ let e = g[s][i]; if e == bef{dp[s][i] = p;} } let mut L = vec![0;g[s].len()]; let mut R = vec![0;g[s].len()]; for i in 0..g[s].len(){ L[i] = { let mut tmp = 1+dp[s][i]; tmp %= m; if i != 0{ tmp *= L[i-1]; } tmp%m } } for i in (0..g[s].len()).rev(){ if i+1 Vec{ let mut res:Vec = Vec::new(); for i in 1..n+1{ if i*i>n{break;} if n%i == 0{ res.push(i); if i != n/i{ res.push(n/i); } } } res } struct UnionFind{ par:Vec, rank:Vec, size:Vec, size_edge:Vec, } impl UnionFind{ fn init(n:usize) -> UnionFind{ let mut par = vec![0;n]; for i in 0..n{ par[i] = i; } UnionFind{ par:par, rank:vec![0;n], size:vec![1;n], size_edge:vec![0;n], } } fn find(&mut self, x:usize) ->usize{ if(self.par[x] == x){ x } else{ let p = self.par[x]; let res = self.find(p); self.par[x] = res; res } } fn same(&mut self, a:usize, b:usize)->bool{ self.find(a) == self.find(b) } fn unite(&mut self, a:usize, b:usize){ let x = self.find(a); let y = self.find(b); if x != y{ if (self.rank[x] < self.rank[y]){ self.par[x] = y; self.size[y] += self.size[x]; self.size_edge[y] += self.size_edge[x]; self.size_edge[y] += 1; } else{ self.par[y] = x; self.size[x] += self.size[y]; self.size_edge[x] += self.size_edge[y]; self.size_edge[x] += 1; if(self.rank[x] == self.rank[y]){ self.rank[x]+=1;} } } else{ self.size_edge[x] += 1; } } fn check_size(&mut self, a:usize) -> usize{ let x = self.find(a); let s = self.size[x]; s } } pub mod FenwickTree { use std::ops::{AddAssign, Sub}; pub struct FenwickTree { n: usize, data: Vec, init: i64, } impl> FenwickTree { pub fn new(size: usize, init: i64) -> FenwickTree { FenwickTree { n: size + 1, data: vec![init; size + 1], init: init, } } pub fn add(&mut self, k: usize, value: i64) { let mut x = k; while x < self.n { self.data[x] += value; x |= x + 1; } } /// Returns a sum of range `[l, r)` pub fn sum(&self, l: usize, r: usize) -> i64 { self.sum_one(r) - self.sum_one(l) } /// Returns a sum of range `[0, k)` pub fn sum_one(&self, k: usize) -> i64 { assert!(k < self.n, "k={} n={}", k, self.n); let mut result = self.init; let mut x = k as i32 - 1; while x >= 0 { result += self.data[x as usize]; x = (x & (x + 1)) - 1; } result } } } pub mod FenwickTree_MOD { use std::ops::{AddAssign, Sub}; use std::ops::RemAssign; pub struct FenwickTree { n: usize, data: Vec, init: i64, MOD: i64, } impl> FenwickTree { pub fn new(size: usize, init: i64, MOD:i64) -> FenwickTree { FenwickTree { n: size + 1, data: vec![init; size + 1], init: init, MOD:MOD, } } pub fn add(&mut self, k: usize, value: i64) { let mut x = k; while x < self.n { self.data[x] += value; self.data[x] %= self.MOD; x |= x + 1; } } /// Returns a sum of range `[l, r)` pub fn sum(&self, l: usize, r: usize) -> i64 { self.sum_one(r) - self.sum_one(l) } /// Returns a sum of range `[0, k)` pub fn sum_one(&self, k: usize) -> i64 { assert!(k < self.n, "k={} n={}", k, self.n); let mut result = self.init; let mut x = k as i32 - 1; while x >= 0 { result += self.data[x as usize]; result %= self.MOD; x = (x & (x + 1)) - 1; } result } } } pub struct Scanner { stdin: R, } impl Scanner { pub fn read(&mut self) -> T { use std::io::Read; let buf = self .stdin .by_ref() .bytes() .map(|b| b.unwrap()) .skip_while(|&b| b == b' ' || b == b'\n' || b == b'\r') .take_while(|&b| b != b' ' && b != b'\n' && b != b'\r') .collect::>(); unsafe { std::str::from_utf8_unchecked(&buf) } .parse() .ok() .expect("Parse error.") } pub fn vec(&mut self, n: usize) -> Vec { (0..n).map(|_| self.read()).collect() } pub fn chars(&mut self) -> Vec { self.read::().chars().collect() } } struct LazySegTree { n: usize, val: Vec, ma:Vec, op: BiOp, e: i64, upe:i64, inf:i64, } impl LazySegTree where BiOp: Fn(i64, i64) -> i64{ pub fn new(n_: usize, op: BiOp, e: i64, upe:i64, inf:i64) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 LazySegTree {n: n, val: vec![e; 2 * n ], ma:vec![upe;2*n], op: op, e: e, upe:upe, inf:inf} } pub fn query(&self, x:usize, y:usize, l:usize, r:usize, k:usize) -> i64 { if (r<=x || y<=l) {return self.inf;} if (x<=l && r<=y) {return self.ma[k];} let mut L = self.query(x,y,l,(l+r)/2, k*2); let mut R = self.query(x,y,(l+r)/2,r, k*2+1); return self.val[k] + (self.op)(L, R); } pub fn update(&mut self, x:usize, y:usize, v:i64, l:usize,r:usize, k:usize) { if (l>=r) {return;} if (x<=l && r<=y){ self.val[k]+=v; self.ma[k]+=v; } else if(l usize{ if (b==0){return a;} let mut x = c.clone(); *c = x+1; println!("{} {} {}", a,b,c); return lab(b, a%b, c); } fn dist_1(x0:f64, y0:f64, x1:f64, y1:f64, x2:f64, y2:f64) -> f64{ let mut a = x2-x1; let mut b= y2-y1; let mut a2 = a*a; let mut b2 = b*b; let mut r2 = a2+b2; let mut tt = -(a*(x1-x0) + b*(y1-y0)); if tt<0.0{ return (x1 - x0)*(x1-x0) + (y1-y0)*(y1-y0); } if (tt>r2){ return (x2-x0)*(x2-x0) + (y2-y0)*(y2-y0); } let mut f1 = a*(y1-y0)-b*(x1-x0); return (f1*f1)/r2; } fn modinv(a:usize)->usize{ let mut b = MODu as i64; let mut u = 1 as i64; let mut v = 0 as i64; let mut a = a as i64; let mut m = MODu as i64; while(b>0){ let mut t = a/b; a -= t*b; mem::swap(&mut a, &mut b); u-=t*v; mem::swap(&mut u, &mut v); } u%=m; if u<0{u+=m;} return u as usize; } fn modpow(x:usize, n:usize) -> usize{ let mut ans = 1; let mut n = n; let mut x = x; while(n != 0){ if (n&1 == 1){ans = ans*x%MODu;} x = x*x%MODu; n = n>>1; } ans } fn comb(a:usize, b:usize, fac:&Vec, ifac:&Vec)->usize{ let mut a = a; let mut b = b; if a == 0 && b == 0{return 1;} if a(Vec, Vec){ let mut fac = vec![0;300001]; let mut ifac = vec![0;300001]; fac[0] = 1; ifac[0] = 1; for i in 0..300000{ fac[i+1] = fac[i] * (i+1) % MODu; ifac[i+1] = ifac[i] * modpow(i+1, MODu - 2) % MODu; } (fac, ifac) } struct ConvexHallTrick { Q: Vec<(i64, i64)>, } impl ConvexHallTrick{ pub fn new() -> Self { ConvexHallTrick {Q: Vec::new()} } pub fn calc(&self, p:(i64, i64), x:i64)->i64{ return p.0 * x + p.1; } pub fn dodo(& self, A:(i64, i64), B:(i64, i64), C:(i64, i64)) -> bool{ //max or min (A.1 - C.1) * (B.0 - A.0) <= (A.1 - B.1)*(C.0 - A.0) } pub fn add(&mut self, a:i64, b:i64){ self.Q.push((a, b)); let mut v = self.Q.len(); while(v >=3 && self.dodo(self.Q[v-3], self.Q[v-2], self.Q[v-1])){ self.Q[v-2] = self.Q[v-1]; self.Q.pop(); v = self.Q.len(); } } pub fn query(& self, x:i64) -> i64{ let mut L = -1; let mut R = (self.Q.len() - 1) as i64; while(R-L>1){ let mut m = (L+R)/2; if self.calc(self.Q[m as usize], x)>=self.calc(self.Q[m as usize+1], x){ L=m; } else{ R=m; } } return self.calc(self.Q[R as usize], x); } } #[derive(Eq, PartialEq, Clone, Debug)] pub struct Rev(pub T); impl PartialOrd for Rev { fn partial_cmp(&self, other: &Rev) -> Option { other.0.partial_cmp(&self.0) } } impl Ord for Rev { fn cmp(&self, other: &Rev) -> Ordering { other.0.cmp(&self.0) } } fn sieve(n:usize) -> (Vec, Vec){ let mut p:usize = 0; let mut is_prime = vec![false; n+1]; let mut prime = Vec::new(); for i in 0..n+1{ is_prime[i] = true; } is_prime[0] = false; is_prime[1] = false; for i in 2..n+1{ if is_prime[i]{ prime.push(i as usize); let mut j = 2*i; while(j<=n){ is_prime[j] = false; j+=i; } } } (is_prime, prime) } fn nHr(n:usize, r:usize, fac:&Vec, ifac:&Vec) -> usize{ comb(n + r - 1, r, fac, ifac) } fn gcd(a:usize, b:usize)->usize{ if b==0{return a;} return gcd(b, a%b); } fn lcm(a:usize, b:usize)->usize{ return (b/gcd(a, b))*a; } struct SegTree_MOD { n: usize, dat: Vec, op: BiOp, e: i64, mod_:i64, } impl SegTree_MOD where BiOp: Fn(i64, i64) -> i64 { pub fn new(n_: usize, op: BiOp, e: i64, mod_:i64) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree_MOD {n: n, dat: vec![e; 2 * n - 1], op: op, e: e, mod_:mod_} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: i64) { let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); self.dat[k] %= self.mod_; } } /* [a, b) (note: half-inclusive) * http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */ pub fn query(&self, mut a: usize, mut b: usize) -> i64 { let mut left = self.e; let mut right = self.e; a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a]); left %= self.mod_; } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1], right); right %= self.mod_; } a = a / 2; b = (b - 1) / 2; } let mut res = (self.op)(left, right); res %= self.mod_; res } } fn modpow2(x:usize, n:usize) -> usize{ let mut ans = 1; let mut n = n; let mut x = x; while(n != 0){ if (n&1 == 1){ans = ans*x%13;} x = x*x%13; n = n>>1; } ans } #[derive(Clone)] struct PPUnionFind{ par:Vec, rank:Vec, time:Vec, now:usize, history:Vec<(usize, usize)>, } impl PPUnionFind{ fn init(n:usize) -> PPUnionFind{ let mut par = vec![0;n]; for i in 0..n{ par[i] = i; } PPUnionFind{ par:par, rank:vec![0;n], time:vec![INF as usize;n], now:0, history:vec![], } } fn find(&mut self, t:usize, x:usize) ->usize{ if self.time[x] > t{return x;} else { let tt = self.par[x]; return self.find(t, tt);} } fn unite(&mut self, x:usize, y:usize) -> usize{ self.now+=1; let mut x = x; let mut y = y; let nc = self.now; x = self.find(nc, x); y = self.find(nc, y); if x == y{return self.now;} if self.par[x] < self.par[y] {mem::swap(&mut x, &mut y);} self.par[x] += self.par[y]; self.history.push((self.now, self.par[x])); self.par[y] = x; self.time[y] = self.now; return self.now; } } fn prim(cost:&Vec>, vs:usize)->i64{ let mut used = vec![false; vs]; let mut bh = BinaryHeap::new(); for j in 0..cost[0].len(){ bh.push((cost[0][j].1, cost[0][j].0)); } used[0] = true; let mut res = 0; while(bh.len()!=0){ let mut m = bh.pop().unwrap(); if used[m.1]{continue;} used[m.1] = true; for e in 0..cost[m.1].len(){ if used[cost[m.1][e].0] == false{ bh.push((cost[m.1][e].1, cost[m.1][e].0)); } } res += m.0; } return res; } fn kruscal(cost:&mut Vec<(i64, usize, usize)>, vs:usize)->i64{ cost.sort(); let mut uf = UnionFind::init(vs); let mut res = 0; for i in 0..cost.len(){ let e = cost[i].clone(); if uf.find(e.1) != uf.find(e.2){ uf.unite(e.1, e.2); res += e.0; } } return res; } fn kruscal3(cost:&mut Vec<(f64, usize, usize, usize)>, vs:usize)->(UnionFind, Vec) { cost.sort_by(|a, b| (&a.0).partial_cmp(&b.0).unwrap()); let mut uf = UnionFind::init(vs); let mut res = 0.0; let mut rv = Vec::new(); let mut c = 0.0; let mut t = 0.0; for i in 0..cost.len(){ let e = cost[i].clone(); if uf.find(e.1) != uf.find(e.2){ uf.unite(e.1, e.2); rv.push(e.3); } } return (uf,rv); } fn kruscal2(cost:&mut Vec<(i64, usize, usize)>, vs:usize)->(i64, UnionFind){ cost.sort(); let mut uf = UnionFind::init(vs); let mut res = 0; let mut tmp = Vec::new(); for i in 0..cost.len(){ let e = cost[i].clone(); if uf.find(e.1) != uf.find(e.2){ uf.unite(e.1, e.2); res += e.0; tmp.push(e.0); println!("{:?}", e); } } return (res,uf); } struct segtree{ n: usize, dat: Vec, op:Op, e:I, } impl segtree where Op: Fn(I, I) -> I, I:Copy{ pub fn new(n_:usize, op: Op, e:I)->Self{ let mut n = 1; while(n0){ k = (k-1)/2; self.dat[k] = (self.op)(self.dat[k*2 + 1], self.dat[k*2+2]); } } pub fn query(&self, a:usize, b:usize, k:usize, l:usize, r:usize) -> I{ if r<=a || b<=l{return self.e;} if a<=l && r<=b{return self.dat[k];} else{ let mut vl = self.query(a, b, k*2+1, l, (l+r)/2); let mut vr = self.query(a, b, k*2+2, (l+r)/2, r); return (self.op)(vl, vr); } } } struct BIT{ n:usize, bit:Vec, op:Op, e:I, ini:I, } impl BIT /* 1-index*/ where Op: Fn(I, I) -> I, I:Copy{ pub fn new(n_:usize, op:Op, e:I, ini:I)->Self{ BIT{n:n_, bit:vec![e;n_+1], op:op, e:e, ini:ini} } pub fn sum(&self, i:usize)->I{ let mut s = self.ini; let mut i = i as i64; while(i>0){ s = (self.op)(s, self.bit[i as usize]); i -= i & -i; } return s; } pub fn add(&mut self, i:usize, x:I){ let mut i = i as i64; while(i<=self.n as i64){ self.bit[i as usize] = (self.op)(self.bit[i as usize], x); i += i & -i; } } } struct Dsegtree{ n: usize, datA: Vec, datB:Vec, e:i64, } impl Dsegtree{ pub fn new(n_:usize, e:i64)->Self{ let mut N = 1; while(N i64{ if (b<=l || r<=a){ return 0; } else if (a<=l && r<=b){ return self.datA[k] * ((r as i64-l as i64)) + self.datB[k]; } else{ let mut res = (cmp::min(b, r) as i64 - cmp::max(a, l) as i64)* self.datA[k]; res += self.query(a, b, k*2+1, l, (l+r)/2); res += self.query(a, b, k*2+2, (l+r)/2, r); return res; } } } /* unwrap_or_else */ fn prime_factor(n:usize)->HashMap{ let mut res = HashMap::new(); let mut n = n; for i in 2..n{ if i*i>n{break;} while(n%i==0){ *res.entry(i).or_insert(0)+=1; n/=i; } } if n != 1{ res.insert(n, 1); } res } struct rollinghash{ base:Vec, Mod:Vec, string:Vec, hash:Vec>, power:Vec>, } impl rollinghash{ pub fn new(s:&Vec)->Self{ let mut n = s.len(); let mut base = vec![1007, 2009]; let mut hash = vec![vec![0;n+1];2]; let mut power = vec![vec![1;n+1];2]; let mut Mod = vec![1000000007, 1000000009]; for iter in 0..2{ let mut ht = vec![0;n+1]; let mut pt = vec![1;n+1]; for i in 0..n{ hash[iter][i+1] = (hash[iter][i] * base[iter] + (s[i] as usize) as i64) % Mod[iter]; power[iter][i+1] = power[iter][i] * base[iter] % Mod[iter]; } } return rollinghash{base:base, Mod:Mod, string:s.clone(), hash:hash, power:power} } pub fn get(&self, l:usize, r:usize)->(i64, i64){ let mut res = self.hash[0][r] - self.hash[0][l] * self.power[0][r-l] % self.Mod[0]; if res<0{ res += self.Mod[0]; } let mut res2 = self.hash[1][r] - self.hash[1][l] * self.power[1][r-l] % self.Mod[1]; if res2<0{ res2 += self.Mod[1]; } return (res, res2); } } struct LCA{ G:Vec>, parent:Vec>, depth:Vec, root:usize, } impl LCA{ //1-index pub fn new(G:Vec>, N:usize)->Self{ let D = (f64::log2(N as f64)) as usize + 2; LCA{G:G, parent:vec![vec![0;N+1];D], depth:vec![0;N+1], root:N} } pub fn getP(&mut self, v:usize, p:usize, d:usize){ self.parent[0][v] = p; self.depth[v] = d; for i in 0..self.G[v].len(){ if self.G[v][i] != p{ let n = self.G[v][i]; self.getP(n, v, d+1); } } } pub fn init(&mut self){ let root = self.root; self.getP(root, 0, 0); let V = self.depth.len(); let logN = f64::log2(V as f64) as usize + 2; for k in 0..logN-1{ for v in 1..root+1{ if self.parent[k][v] == 0{ self.parent[k+1][v] = 0; } else{ self.parent[k+1][v] = self.parent[k][self.parent[k][v]]; } } } } fn ft(&self, f:usize, d:usize)->usize{ let mut now = f; let mut now2 = 0; let V = self.depth.len(); let logN = f64::log2(V as f64) as usize + 2; let mut v = f; for k in 0..logN{ if (d >> k) & 1 == 1{ v = self.parent[k][v]; } } return v; } fn lca(&mut self,u:usize, v:usize)->usize{ let mut u = u; let mut v = v; if self.depth[u] > self.depth[v]{ mem::swap(&mut u, &mut v); } let mut V = self.depth.len(); let logN = f64::log2(V as f64) as usize + 2; for k in 0..logN{ if ((self.depth[v] - self.depth[u]) >> k)&1 == 1{ v = self.parent[k][v]; } } if u == v{return u;} for k in (0..logN).rev(){ if self.parent[k][u] != self.parent[k][v]{ u = self.parent[k][u]; v = self.parent[k][v]; } } return self.parent[0][u]; } } fn fast_prime_factor_talbe(ma:usize)->Vec{ let mut p = sieve(1001); let mut minf = vec![0;ma]; for j in 0..p.1.len(){ let P = p.1[j]; let mut now = P; for i in 2..ma{ if minf[now] ==0{ minf[now] = P; } now+=P; if now>=ma{ break; } } } return minf; } fn area_rectanble(x1:f64, x2:f64, x3:f64, y1:f64, y2:f64, y3:f64)->f64{ let tmp = x1*y2 + x2*y3 + x3*y1 - y1*x2 - y2*x3 - y3*x1; tmp.abs()/2.0 } #[derive(PartialEq, Clone)] struct FW(f64); impl Eq for FW {} impl PartialOrd for FW { fn partial_cmp(&self, other: &Self) -> Option { self.0.partial_cmp(&other.0) } } impl Ord for FW { fn cmp(&self, other: &FW) -> Ordering { other.partial_cmp(self).unwrap() } } fn main(){ let sssss = std::io::stdin(); let mut sc = Scanner { stdin: sssss.lock() }; } pub static MOD:i64 = 1000000007; pub static MODu:usize = 998244353; pub static eps:f64 = 1e-9; const INF: i64 = 1 << 60;