#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } using namespace std; #define int long long #define ll long long #define rep(i, n) for (ll i = 0; i < (n); i++) #define FOR(i,a,b) for(ll i=(a);i<(b);i++) #define FORR(i,a,b)for(ll i=(a);i<=(b);i++) #define repr(i,n) for(ll i=n;i>=0;i--) #define P pair #define sz(x) (ll)x.size() #define ALL(x) (x).begin(),(x).end() #define ALLR(x) (x).rbegin(),(x).rend() #define VE vector #define COUT(x) cout<<(x)< #define SE set #define PQ priority_queue #define PQR priority_queue> #define COUT(x) cout<<(x)< prime_factor(ll n) { map ret; for (ll i = 2; i * i <= n; i++) { while (n % i == 0) { ret[i]++; n /= i; } } if (n != 1) ret[n] = 1; return ret; } const int MAX = 2000005; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++) { fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } long long COM(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } using Graph = vector; vector> RunLength(string s) { if (s.size() == 0)return {}; vector>res(1, pair(s[0], 0)); for (char p : s) { if (res.back().first == p) { res.back().second++; } else { res.emplace_back(p, 1); } } return res; } int mod = 1000000007; struct mint { ll x; // typedef long long ll; mint(ll x = 0) :x((x%mod + mod) % mod) {} mint operator-() const { return mint(-x); } mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod - a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this; } mint operator+(const mint a) const { mint res(*this); return res += a; } mint operator-(const mint a) const { mint res(*this); return res -= a; } mint operator*(const mint a) const { mint res(*this); return res *= a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t >> 1); a *= a; if (t & 1) a *= *this; return a; } // for prime mod mint inv() const { return pow(mod - 2); } mint& operator/=(const mint a) { return (*this) *= a.inv(); } mint operator/(const mint a) const { mint res(*this); return res /= a; } }; struct combination { vector fact, ifact; combination(int n) :fact(n + 1), ifact(n + 1) { //assert(n < mod); fact[0] = 1; for (int i = 1; i <= n; ++i) fact[i] = fact[i - 1] * i; ifact[n] = fact[n].inv(); for (int i = n; i >= 1; --i) ifact[i - 1] = ifact[i] * i; } mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return fact[n] * ifact[k] * ifact[n - k]; } }; //comb(20005); // KETASUU int GetDigit(int num) { return log10(num) + 1; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n, m; cin >> n >> m; int k; cin >> k; char op; cin >> op; VE b(m); rep(i, m)cin >> b[i]; VE a(n); rep(i, n)cin >> a[i]; sort(ALL(a)); sort(ALL(b)); int ans = 0; if (op == '+') { rep(i, n) { ans += lower_bound(ALL(b), k - a[i]) - b.begin(); } } else { rep(i, n) { ans += lower_bound(ALL(b), k / a[i]) - b.begin(); } } cout << n*m-ans << endl; return 0; }