#include using namespace std; using lint = long long; const lint mod = 1e9 + 7; #define all(x) (x).begin(), (x).end() #define bitcount(n) __builtin_popcountl((lint)(n)) #define fcout cout << fixed << setprecision(15) #define highest(x) (63 - __builtin_clzl(x)) template inline void YES(T condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; } template inline void Yes(T condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; } templateint character_count(T text, U character){ int ans = 0; for(U i: text){ ans += (i == character); } return ans; } lint power(lint base, lint exponent, lint module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ lint root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }} struct position{ int y, x; }; position mv[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; // double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); } template string to_string(pair x){ return to_string(x.first) + "," + to_string(x.second); } string to_string(string x){ return x; } template void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++) ans += to_string(*i) + " "; if(!ans.empty()) ans.pop_back(); cout << ans << endl; } template void cins(itr first, itr last){ for(auto i = first; i != last; i++){ cin >> (*i); } } template T gcd(T a, T b){ if(a && b){ return gcd(min(a, b), max(a, b) % min(a, b)); }else{ return a; }} template T lcm(T a, T b){ return a / gcd(a, b) * b; } struct combination{ vector fact, inv; combination(int sz) : fact(sz + 1), inv(sz + 1){ fact[0] = 1; for(int i = 1; i <= sz; i++){ fact[i] = fact[i - 1] * i % mod; } inv[sz] = power(fact[sz], mod - 2, mod); for(int i = sz - 1; i >= 0; i--){ inv[i] = inv[i + 1] * (i + 1) % mod; } } lint C(int p, int q) const{ if(q < 0 || p < q) return 0; return (fact[p] * inv[q] % mod * inv[p - q] % mod); } }; template bool next_sequence(itr first, itr last, int max_bound){ itr now = last; while(now != first){ now--; (*now)++; if((*now) == max_bound){ (*now) = 0; }else{ return true; } } return false; } struct road{ int to, color; }; struct colorpair{ int c1, c2; }; colorpair merge(colorpair p1, colorpair p2){ if(p1.c1 == -2 || p2.c1 == -2){ return {-2, -2}; } if(p1.c1 == p2.c1 && p1.c2 == p2.c2){ return p1; } if(p1.c2 != -1 && p2.c2 != -1){ return {-2, -2}; } if(p1.c2 == -1 && p2.c2 == -1){ return {p1.c1, p2.c1}; } if(p1.c1 == -1){ swap(p1, p2); } if(p1.c1 == p2.c1 || p1.c2 == p2.c1){ return p1; } return {-2, -2}; } int N, K; vector> roads; vector is_in_forest; vector subtree_size; int get_subtree_size(int now, int back){ //cout << now << " "; int ret = 1; for(road i: roads[now]){ if(i.to != back && is_in_forest[i.to]){ ret += get_subtree_size(i.to, now); } } return subtree_size[now] = ret; } int full_size; int find_centroid(int now, int back){ int max_subtree = -1, max_subtree_size = 0; for(road i: roads[now]){ if(i.to != back && is_in_forest[i.to]){ if(max_subtree_size < subtree_size[i.to]){ max_subtree_size = subtree_size[i.to]; max_subtree = i.to; } } } if(max_subtree_size * 2 <= full_size){ return now; }else{ return find_centroid(max_subtree, now); } } vector> colorpairs; void colorful_dfs(int now, int back, int number, colorpair now_color){ if(now_color.c1 == -2){ return; } colorpairs[number].push_back(now_color); for(road i: roads[now]){ if(i.to != back && is_in_forest[i.to]){ colorful_dfs(i.to, now, number, merge(now_color, {i.color, -1})); } } } lint centroid_decomposition(int root){ //cout << root << endl; get_subtree_size(root, -1); //cout << endl; full_size = subtree_size[root]; int centroid = find_centroid(root, -1); colorpairs.clear(); vector subroot; for(road i: roads[root]){ if(is_in_forest[i.to]){ subroot.push_back(i); } } for(int i = 0; i < subroot.size(); i++){ colorpairs.push_back({}); colorful_dfs(subroot[i].to, root, i, {subroot[i].color, -1}); /*for(auto j: colorpairs[i]){ cout << j.c1 << "," << j.c2 << " "; } cout << endl;*/ } //cout << endl; map, lint> color_all, color_subtree[subroot.size()]; lint alone_all = 0, alone_subtree[subroot.size()]; fill(alone_subtree, alone_subtree + subroot.size(), 0); for(int i = 0; i < subroot.size(); i++){ for(auto j: colorpairs[i]){ color_all[{j.c1, j.c2}]++; color_subtree[i][{j.c1, j.c2}]++; if(j.c2 == -1){ alone_all++; alone_subtree[i]++; } } } lint ans = 0, half = 0; for(int i = 0; i < subroot.size(); i++){ for(auto j: colorpairs[i]){ if(j.c2 != -1){ half += color_all[{j.c1, j.c2}] - color_subtree[i][{j.c1, j.c2}]; ans += color_all[{j.c1, -1}] - color_subtree[i][{j.c1, -1}]; ans += color_all[{j.c2, -1}] - color_subtree[i][{j.c2, -1}]; ans += 1; }else{ half += (alone_all - alone_subtree[i]) - (color_all[{j.c1, -1}] - color_subtree[i][{j.c1, -1}]); } } } assert(half % 2 == 0); ans += half / 2; is_in_forest[root] = false; for(road i: roads[root]){ if(is_in_forest[i.to]){ ans += centroid_decomposition(i.to); } } return ans; } int main(){ cin >> N >> K; roads.resize(N); for(int i = 0; i < N - 1; i++){ int u, v, c; cin >> u >> v >> c; u--, v--, c--; roads[u].push_back({v, c}); roads[v].push_back({u, c}); } is_in_forest.resize(N, true); subtree_size.resize(N); cout << centroid_decomposition(0) << endl; }