#include using namespace std; using lint = long long int; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((lint)(x).size()) #define POW2(n) (1LL << (n)) #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template void ndarray(vector &vec, int len) { vec.resize(len); } template void ndarray(vector &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template pair operator+(const pair &l, const pair &r) { return make_pair(l.first + r.first, l.second + r.second); } template pair operator-(const pair &l, const pair &r) { return make_pair(l.first - r.first, l.second - r.second); } template istream &operator>>(istream &is, vector &vec){ for (auto &v : vec) is >> v; return is; } ///// This part below is only for debug, not used ///// template ostream &operator<<(ostream &os, const vector &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const deque &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const pair &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; } template ostream &operator<<(ostream &os, const map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; ///// END ///// vector> edge; vector color; vector uv; lint ret; struct Tree { int NO_PARENT = -1; using pint = std::pair; int V; int E; std::vector> to; // (node_id, edge_id) std::vector par; // parent node_id par[root] = -1 std::vector subtree_size; // size of each subtree std::vector available_edge; // If 0, ignore the corresponding edge. Tree() : Tree(0) {} Tree(int v) : V(v), E(0), to(v), par(v, NO_PARENT), subtree_size(v) {} std::vector color; void add_edge(int v1, int v2, int c) { to[v1].emplace_back(v2, E); to[v2].emplace_back(v1, E); color.emplace_back(c); E++; available_edge.emplace_back(1); } vector ok_node; int _dfs_fixroot(int now, int prv) { subtree_size[now] = 1; for (auto nxt : to[now]) { if (nxt.first != prv and available_edge[nxt.second]) { par[nxt.first] = now; subtree_size[now] += _dfs_fixroot(nxt.first, now); } } return subtree_size[now]; } void fix_root(int root) { par[root] = NO_PARENT; _dfs_fixroot(root, -1); } //// Centroid Decpmposition //// std::vector centroid_cand_tmp; void _dfs_detect_centroids(int now, int prv, int n) { bool is_centroid = true; for (auto nxt : to[now]) { if (nxt.first != prv and available_edge[nxt.second]) { _dfs_detect_centroids(nxt.first, now, n); if (subtree_size[nxt.first] > n / 2) is_centroid = false; } } if (n - subtree_size[now] > n / 2) is_centroid = false; if (is_centroid) centroid_cand_tmp.push_back(now); } pint detect_centroids(int r) // ([centroid_node_id1], ([centroid_node_id2]|-1)) { centroid_cand_tmp.clear(); while (par[r] != NO_PARENT) r = par[r]; int n = subtree_size[r]; _dfs_detect_centroids(r, -1, n); if (centroid_cand_tmp.size() == 1) return std::make_pair(centroid_cand_tmp[0], -1); else return std::make_pair(centroid_cand_tmp[0], centroid_cand_tmp[1]); } lint ret; unordered_map mp; void cddfs(int now, int prv, int c1, int c2) { if (!ok_node[now]) return; for (auto p : to[now]) { int nxt = p.first, eid = p.second; if (nxt == prv or ok_node[nxt] == 0) continue; int c = color[eid]; int c2new = c2; if (c2 >= 0 and c != c2 and c != c1) continue; if (c != c1) c2new = c; mp[c2new]++; cddfs(nxt, now, c1, c2new); } } int dfscnt(int now, int prv, int c) { int ret = 1; for (auto p : to[now]) if (ok_node[p.first] and color[p.second] == c and p.first != prv) ret += dfscnt(p.first, now, c); return ret; } void centroid_decomposition(int now) { fix_root(now); now = detect_centroids(now).first; unordered_map singlemp; for (auto p : to[now]) if (ok_node[p.first]) singlemp[color[p.second]] += dfscnt(p.first, now, color[p.second]); lint nbt = 0; for (auto p : singlemp) { ret += nbt * p.second; nbt += p.second; } unordered_map> c2nxt; for (auto p : to[now]) if (ok_node[p.first]) { c2nxt[color[p.second]].push_back(p.first); } // dbg(singlemp); for (auto pp : c2nxt) { unordered_map mp_second_color; for (auto nxt : pp.second) { mp.clear(); cddfs(nxt, now, pp.first, -1); // dbg((vector{now, nxt})); // dbg(mp); for (auto p : mp) if (p.first >= 0) { if (singlemp.count(p.first)) ret += p.second * singlemp[p.first]; ret += p.second * (1 + mp_second_color[-1] + mp_second_color[p.first]); } for (auto p : mp) mp_second_color[p.first] += p.second; // dbg(ret); } } ok_node[now] = 0; for (auto p : to[now]) { if (!available_edge[p.second]) continue; available_edge[p.second] = 0; centroid_decomposition(p.first); } } }; int main() { int N, K; cin >> N >> K; Tree tree(N); REP(e, N - 1) { int u, v, c; cin >> u >> v >> c; tree.add_edge(u - 1, v - 1, c); } tree.ok_node.assign(N, 1); tree.ret = 0; tree.centroid_decomposition(0); cout << tree.ret << endl; }