class SegTree attr_reader :size, :e, :f attr_accessor :seg def self.create(a=[],e,f) n = 1 n *= 2 while n < a.size this = new(n,e,f) a.size.times do |i| this.seg[i+n] = a[i] end (n-1).downto(1) do |i| this.seg[i] = f[ this.seg[i*2],this.seg[i*2+1] ] end this end def initialize(n=2**32,e,f) @size = n @e = e @f = f @seg = Array.new(size*2, e) end def [](i) i += size seg[i] end def []=(i,x) i += size seg[i] = x end def update(i,x) i += size seg[i] = x _update(i) end def _update(i) while i > 1 i /= 2 seg[i] = f[ seg[i*2], seg[i*2+1] ] end end def swap(i,j) i += size j += size seg[j][1],seg[i][1] = seg[i][1],seg[j][1] _update(i) _update(j) end def query(a,b) ans = e a += size; b += size while a < b (ans = f[ ans, seg[a] ]; a += 1) if a.odd? (b -= 1; ans = f[ ans, seg[b] ]) if b.odd? a /= 2; b /= 2 end ans end def inspect { size: size, seg: seg }.to_s end end # SegTree.new(N,E,F) := 要素数N、単位元E、演算Fで初期化、ただしNは2の冪 # SegTree.create(A,E,F) := モノイドA、単位元E、演算Fで初期化で初期化 # update(i,x) := A[i]をxに更新 # query(a,b) := 半開区間[a,b)でのA[i]の演算結果 # # 単位元を追加してモノイドにする例(gcd) # E = -1 # F = -> x,y { x == E ? y : y == E ? x : x.gcd(y) } # T = SegTree.create(a,E,F) n,m = gets.split.map &:to_i a = gets.split.map &:to_i a = a.map.with_index{|v,i|[v,i]} E = [10**6, -1] # 値、インデックス F = -> x,y { x[0] < y[0] ? x : y } T = SegTree.create(a,E,F) m.times do c,l,r = gets.split.map &:to_i if c == 1 T.swap(l-1,r-1) else ans = T.query(l-1,r) puts ans[1]+1 end end