#include using namespace std; using LL = long long int; #define incID(i, l, r) for(int i = (l) ; i < (r); ++i) #define decID(i, l, r) for(int i = (r) - 1; i >= (l); --i) #define incII(i, l, r) for(int i = (l) ; i <= (r); ++i) #define decII(i, l, r) for(int i = (r) ; i >= (l); --i) #define inc(i, n) incID(i, 0, n) #define dec(i, n) decID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec1(i, n) decII(i, 1, n) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define FR front() #define BA back() #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); }; auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); }; auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); }; auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); }; #define SI(v) static_cast(v.size()) #define RF(e, v) for(auto & e: v) #define until(e) while(! (e)) #define if_not(e) if(! (e)) #define ef else if #define UR assert(false) #define IN(T, ...) T __VA_ARGS__; IN_(__VA_ARGS__); void IN_() { }; template void IN_(T & a, U & ... b) { cin >> a; IN_(b ...); }; template void OUT(T && a) { cout << a << endl; } template void OUT(T && a, U && ... b) { cout << a << " "; OUT(b ...); } // ---- ---- template istream & operator>>(istream & s, vector & v) { RF(e, v) { s >> e; } return s; } template ostream & operator<<(ostream & s, vector const & v) { inc(i, SI(v)) { s << (i == 0 ? "" : " ") << v[i]; } return s; } template istream & operator>>(istream & s, pair & p) { return (s >> p.FI >> p.SE); } template ostream & operator<<(ostream & s, pair const & p) { return (s << p.FI << " " << p.SE); } int main() { IN(int, n, m); vector a(n); vector> v(m); cin >> a >> v; auto f = [&](LL c) -> bool { vector s(n + 2); RF(e, v) { LL x = e.FI; LL w = e.SE; LL v1 = w - c * (x - 1); LL vn = w - c * (n - x); LL L = (v1 >= 0 ? 1 : x - (w / c)); LL R = (vn >= 0 ? n : x + (w / c)); assert(inII(L, 1, n)); assert(inII(R, 1, n)); LL vl = w - c * (x - L); LL vr = w - c * (R - x); assert(vl >= 0 && vr >= 0); s[L + 0] += vl; s[L + 1] -= vl; s[L + 1] += c; s[x + 1] -= 2 * c; s[R + 1] += c; s[R + 1] -= vr; s[R + 2] += vr; } inc1(i, n + 1) { s[i + 1] += s[i]; } inc1(i, n + 1) { s[i + 1] += s[i]; } assert(s.FR == 0 && s.BA == 0); inc(i, n) { if(a[i] <= s[i + 1]) { return false; } } return true; }; LL INF = 0; RF(e, v) { setmax(INF, e.SE); } INF++; LL ng = -1, ok = INF; until(abs(ok - ng) == 1) { LL mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } if(ok == INF) { ok = -1; } OUT(ok); }