#include using namespace std::literals::string_literals; using i64 = long long; using std::cout; using std::endl; using std::cin; template std::vector make_v(size_t a){return std::vector(a);} template auto make_v(size_t a,Ts... ts){ return std::vector(ts...))>(a,make_v(ts...)); } class heavy_light_decomposition { public: using i32 = std::int_fast32_t; using u32 = std::uint_fast32_t; std::vector> g; std::vector edge_u, edge_v, size, et, in, out, head; std::vector parent, heavy; private: void calc_size(u32 v) { size[v] = 1; for(int id: g[v]) { int to = edge_u[id] ^ edge_v[id] ^ v; if(to == parent[v]) continue; parent[to] = v; calc_size(to); size[v] += size[to]; if(heavy[v] == -1 or size[heavy[v]] < size[to]) heavy[v] = to; } } void calc_et(u32 v) { in[v] = et.size(); et.push_back(v); if(heavy[v] != -1) { head[heavy[v]] = head[v]; calc_et(heavy[v]); } for(int id: g[v]) { int to = edge_u[id] ^ edge_v[id] ^ v; if(to == parent[v] or to == heavy[v]) continue; head[to] = to; calc_et(to); } out[v] = et.size(); } template void path(i32 x, i32 y, F& process, bool edge) const { std::vector> l, r; while(true) { if(in[x] > in[y]) { std::swap(x, y); l.swap(r); } if(head[x] == head[y]) { l.emplace_back(in[x] + !!edge, in[y] + 1); break; } l.emplace_back(in[head[y]], in[y] + 1); y = parent[head[y]]; } for(auto e: l) process(e.first, e.second); for(auto e: r) process(e.first, e.second); } template void subtree(u32 v, F& process, bool edge) const { process(in[v] + !!edge, out[v]); } public: heavy_light_decomposition() = default; heavy_light_decomposition(heavy_light_decomposition&&) = default; heavy_light_decomposition(const heavy_light_decomposition &) = default; heavy_light_decomposition(int n) : g(n), size(n), in(n), out(n), parent(n, -1), heavy(n, -1), head(n) {} void add_edge(int x, int y) { g[x].push_back(edge_u.size()); g[y].push_back(edge_v.size()); edge_u.push_back(x); edge_v.push_back(y); } void build(u32 root = 0) { calc_size(root); calc_et(root); } u32 lca(u32 x, u32 y) const { while(true) { if(in[x] > in[y]) std::swap(x, y); if(head[x] == head[y]) return x; y = parent[head[y]]; } } template void path_node(u32 x, u32 y, const F& process) const { path(x, y, process, false); } template void path_edge(u32 x, u32 y, const F& process) const { path(x, y, process, true); } template void path(u32 x, u32 y, const F& process) const { path(x, y, process, false); } template void subtree_node(u32 v, const F& process) const { subtree(v, process, false); } template void subtree_edge(u32 v, const F& process) const { subtree(v, process, true); } template void subtree(u32 v, const F& process) const { subtree(v, process, false); } u32 index_node(u32 v) const { return in[v]; }; u32 index_edge(u32 x, u32 y) const { return std::max(in[x], in[y]); }; u32 index(u32 v) const { return in[v]; }; const u32 operator[](u32 k) const { return in[k]; } }; template class lazy_segment_tree { using value_type = Monoid; using operator_type = OperatorMonoid; using size_type = size_t; using F = std::function; using G = std::function; using H = std::function; size_type size_; size_type height_; F f; G g; H h; value_type id; operator_type id_op; std::vector data; std::vector lazy; std::vector depth; const size_type get_height(const size_type& size) const { size_type height = 1; while(1 << height < size) height++; return height; } const size_type base_size() const { return 1 << height_; } const value_type reflect(const size_type & k) { if(lazy[k] == id_op) return data[k]; return g(data[k], lazy[k], 0, 0); } void eval(const size_type & k) { if(lazy[k] == id_op) return; lazy[k << 1 ^ 0] = h(lazy[k << 1 ^ 0], lazy[k]); lazy[k << 1 ^ 1] = h(lazy[k << 1 ^ 1], lazy[k]); data[k] = reflect(k); lazy[k] = id_op; } void thrust(const size_type & k) { for(int i = height_; i; i--) eval(k >> i); } void recalc(size_type k) { while(k >>= 1) data[k] = f(reflect(k << 1 ^ 0), reflect(k << 1 ^ 1)); } public: lazy_segment_tree() {} lazy_segment_tree(int n, const F & f, const G & g, const H & h, const value_type & id, const operator_type & id_op) : size_(n), f(f), g(g), h(h), id(id), id_op(id_op) { height_ = get_height(size_); data.assign(base_size() << 1, id); lazy.assign(base_size() << 1, id_op); depth.assign(base_size() << 1, 0); for(int i = 0; i < height_ + 1; i++) for(int j = (1 << i); j < (1 << (i + 1)); j++) depth[j] = i; } void update(size_type a, size_type b, operator_type x) { thrust(a += base_size()); thrust(b += base_size() - 1); for(size_type l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if(l & 1) lazy[l] = h(lazy[l], x), l++; if(r & 1) --r, lazy[r] = h(lazy[r], x); } recalc(a); recalc(b); } void change(size_type k, const value_type x) { thrust(k += base_size()); data[k] = x; lazy[k] = id_op; recalc(k); } const value_type fold(size_type a, size_type b) { thrust(a += base_size()); thrust(b += base_size() - 1); value_type left_value = id; value_type right_value = id; for(size_type l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if(l & 1) left_value = f(left_value, reflect(l++)); if(r & 1) right_value = f(reflect(--r), right_value); } return f(left_value, right_value); } const value_type operator[](const size_type & k) { return fold(k, k + 1); } }; struct node { int v, v_all; node() : v(-1), v_all(-1) {} node(int v_all) : v(-1), v_all(v_all) {} node(int v, int v_all) : v(v), v_all(v_all) {} }; std::vector depth; constexpr int dep(const int & k) { return (k < 0 ? -1 : depth[k]); }; int main() { int n; scanf("%d", &n); std::vector>> g(n); heavy_light_decomposition hld(n); for(int i = 0; i < n - 1; i++) { int a, b, c; scanf("%d%d%d", &a, &b, &c); g[a].push_back({b, c}); g[b].push_back({a, c}); hld.add_edge(a, b); } hld.build(); depth.assign(n, 0); std::vector dist(n); auto dfs = [&](auto && dfs, int v, int par) -> void { for(auto e: g[v]) { if(e.first == par) continue; dist[e.first] = dist[v] + e.second; depth[e.first] = depth[v] + 1; dfs(dfs, e.first, v); } }; dfs(dfs, 0, -1); auto calc = [dist, &hld](int u, int v) { return dist[u] + dist[v] - 2LL * dist[hld.lca(u, v)]; }; auto f = [&](node a, node b) { return node( (dep(a.v) < dep(b.v) ? b.v : a.v), (dep(a.v_all) < dep(b.v_all) ? b.v_all : a.v_all)); }; auto g_ = [](node a, int b, int l, int r) { return node( (b ? a.v_all : -1), a.v_all); }; auto h = [](int a, int b) { return b; }; lazy_segment_tree A(n, f, g_, h, node(), -1); for(int i = 0; i < n; i++) A.change(hld[i], node(i)); auto kiri = [&A](int l, int r) { A.update(l, r, 1); }; auto irik = [&A](int l, int r) { A.update(l, r, 0); }; int q; scanf("%d", &q); while(q--) { int k; scanf("%d", &k); i64 ans = 0; int c; scanf("%d", &c); for(int i = 1; i < k; i++) { int v; scanf("%d", &v); node tmp = node(); auto tanpo = [&](int l, int r) { tmp = f(tmp, A.fold(l, r)); }; hld.path(0, v, tanpo); int u = (tmp.v == -1 ? c : tmp.v); hld.path(u, v, kiri); c = hld.lca(v, c); ans += calc(v, u); } A.update(0, n, 0); printf("%lld\n", ans); } return 0; }