//#include #include using namespace std; typedef long long ll; typedef vector Array; typedef vector Matrix; const int INF = 1e9; const ll LINF = ll(1e18) + 1; const int MOD = 1000000007; const int dx[4] = {0, 1, 0, -1}, dy[4] = {-1, 0, 1, 0}; const int Dx[8] = {0, 1, 1, 1, 0, -1, -1, -1}, Dy[8] = {-1, -1, 0, 1, 1, 1, 0, -1}; #define yes cout << "Yes" << endl #define YES cout << "YES" << endl #define no cout << "No" << endl #define NO cout << "NO" << endl #define rep(i, n) for (int i = 0; i < n; i++) #define ALL(v) v.begin(), v.end() #define debug(v) \ cout << #v << ":"; \ for (auto x : v) \ { \ cout << x << ' '; \ } \ cout << endl; template bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } //cout< b; ll mod_pow(ll x, ll n, ll mod) { ll res = 1LL; while (n > 0) { if (n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } ll mod_inv(ll x, ll mod) { return mod_pow(x, mod - 2, mod); } Matrix mIdentity(ll n) { Matrix A(n, Array(n)); for (int i = 0; i < n; ++i) A[i][i] = 1; return A; } Matrix mMul(const Matrix& A, const Matrix& B, ll mod) { Matrix C(A.size(), Array(B[0].size())); for (int i = 0; i < C.size(); ++i) for (int j = 0; j < C[i].size(); ++j) for (int k = 0; k < A[i].size(); ++k) (C[i][j] += (A[i][k] % mod) * (B[k][j] % mod)) %= mod; return C; } // O( n^3 log e ) Matrix mPow(const Matrix& A, ll e, ll mod) { return e == 0 ? mIdentity(A.size()) : e % 2 == 0 ? mPow(mMul(A, A, mod), e / 2, mod) : mMul(A, mPow(A, e - 1, mod), mod); } ll power(ll x, ll n){ x %= MOD; ll res = 1; while(n > 0){ if(n&1){ res = res*x % MOD; } x = x*x %MOD; n >>= 1; } return res; } ll mod_inv(ll x){ return power(x, MOD-2); } int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> n>>m>>k>>p>>q; for (int i = 0; i < n; i++) { ll temp; cin >> temp; b.push_back(temp); } ll drink_sum=0; rep(i,m){ drink_sum+=b[i]; } ll kit_sum=0; for(int i=m;i