using System;
using CompLib.Mathematics;
using CompLib.Util;
class Program
{
private int N, W;
private long K;
private int[] A;
public void Solve()
{
var sc = new Scanner();
N = sc.NextInt();
W = sc.NextInt();
K = sc.NextLong();
A = sc.IntArray();
// 0 -> Wに行くパターン数
// 0 -> Wを飛ばして2Wに行く
var dp = new ModInt[2 * W + 1];
dp[0] = 1;
for (int i = 0; i < 2 * W; i++)
{
if (i == W) continue;
foreach (int j in A)
{
if (i + j <= 2 * W) dp[i + j] += dp[i];
}
}
// 0 -> W dp[W]
// 0 -> 2W W飛ばす dp[2W]
var p = new Matrix(1, 2);
p[0, 0] = 1;
p[0, 1] = dp[W];
var m = new Matrix(2, 2);
m[0, 0] = 0;
m[0, 1] = dp[2 * W];
m[1, 0] = 1;
m[1, 1] = dp[W];
var t = Matrix.Pow(m, K);
var ans = p * t;
Console.WriteLine(ans[0, 0]);
}
public static void Main(string[] args) => new Program().Solve();
}
// https://bitbucket.org/camypaper/complib
namespace CompLib.Mathematics
{
using System.Diagnostics;
using N = ModInt;
#region Matrix
public class Matrix
{
int row, col;
public N[] mat;
///
/// 行 列目の要素へのアクセスを提供します。
///
/// 行の番号
/// 列の番号
public N this[int r, int c]
{
get { return mat[r * col + c]; }
set { mat[r * col + c] = value; }
}
public Matrix(int r, int c)
{
row = r;
col = c;
mat = new N[row * col];
}
public static Matrix operator *(Matrix l, Matrix r)
{
Debug.Assert(l.col == r.row);
var ret = new Matrix(l.row, r.col);
for (int i = 0; i < l.row; i++)
for (int k = 0; k < l.col; k++)
for (int j = 0; j < r.col; j++)
ret.mat[i * r.col + j] = (ret.mat[i * r.col + j] + l.mat[i * l.col + k] * r.mat[k * r.col + j]);
return ret;
}
///
/// ^ を O(^3 log ) で計算します。
///
public static Matrix Pow(Matrix m, long n)
{
var ret = new Matrix(m.row, m.col);
for (int i = 0; i < m.row; i++)
ret.mat[i * m.col + i] = 1;
for (; n > 0; m *= m, n >>= 1)
if ((n & 1) == 1)
ret = ret * m;
return ret;
}
public N[][] Items
{
get
{
var a = new N[row][];
for (int i = 0; i < row; i++)
{
a[i] = new N[col];
for (int j = 0; j < col; j++)
a[i][j] = mat[i * col + j];
}
return a;
}
}
}
#endregion
}
// https://bitbucket.org/camypaper/complib
namespace CompLib.Mathematics
{
#region ModInt
///
/// [0,) までの値を取るような数
///
public struct ModInt
{
///
/// 剰余を取る値.
///
public const long Mod = (int) 1e9 + 7;
///
/// 実際の数値.
///
public long num;
///
/// 値が であるようなインスタンスを構築します.
///
/// インスタンスが持つ値
/// パフォーマンスの問題上,コンストラクタ内では剰余を取りません.そのため, ∈ [0,) を満たすような を渡してください.このコンストラクタは O(1) で実行されます.
public ModInt(long n)
{
num = n;
}
///
/// このインスタンスの数値を文字列に変換します.
///
/// [0,) の範囲内の整数を 10 進表記したもの.
public override string ToString()
{
return num.ToString();
}
public static ModInt operator +(ModInt l, ModInt r)
{
l.num += r.num;
if (l.num >= Mod) l.num -= Mod;
return l;
}
public static ModInt operator -(ModInt l, ModInt r)
{
l.num -= r.num;
if (l.num < 0) l.num += Mod;
return l;
}
public static ModInt operator *(ModInt l, ModInt r)
{
return new ModInt(l.num * r.num % Mod);
}
public static implicit operator ModInt(long n)
{
n %= Mod;
if (n < 0) n += Mod;
return new ModInt(n);
}
///
/// 与えられた 2 つの数値からべき剰余を計算します.
///
/// べき乗の底
/// べき指数
/// 繰り返し二乗法により O(N log N) で実行されます.
public static ModInt Pow(ModInt v, long k)
{
return Pow(v.num, k);
}
///
/// 与えられた 2 つの数値からべき剰余を計算します.
///
/// べき乗の底
/// べき指数
/// 繰り返し二乗法により O(N log N) で実行されます.
public static ModInt Pow(long v, long k)
{
long ret = 1;
for (k %= Mod - 1; k > 0; k >>= 1, v = v * v % Mod)
if ((k & 1) == 1)
ret = ret * v % Mod;
return new ModInt(ret);
}
///
/// 与えられた数の逆元を計算します.
///
/// 逆元を取る対象となる数
/// 逆元となるような値
/// 法が素数であることを仮定して,フェルマーの小定理に従って逆元を O(log N) で計算します.
public static ModInt Inverse(ModInt v)
{
return Pow(v, Mod - 2);
}
}
#endregion
#region Binomial Coefficient
public class BinomialCoefficient
{
public ModInt[] fact, ifact;
public BinomialCoefficient(int n)
{
fact = new ModInt[n + 1];
ifact = new ModInt[n + 1];
fact[0] = 1;
for (int i = 1; i <= n; i++)
fact[i] = fact[i - 1] * i;
ifact[n] = ModInt.Inverse(fact[n]);
for (int i = n - 1; i >= 0; i--)
ifact[i] = ifact[i + 1] * (i + 1);
ifact[0] = ifact[1];
}
public ModInt this[int n, int r]
{
get
{
if (n < 0 || n >= fact.Length || r < 0 || r > n) return 0;
return fact[n] * ifact[n - r] * ifact[r];
}
}
public ModInt RepeatedCombination(int n, int k)
{
if (k == 0) return 1;
return this[n + k - 1, k];
}
}
#endregion
}
namespace CompLib.Util
{
using System;
using System.Linq;
class Scanner
{
private string[] _line;
private int _index;
private const char Separator = ' ';
public Scanner()
{
_line = new string[0];
_index = 0;
}
public string Next()
{
while (_index >= _line.Length)
{
_line = Console.ReadLine().Split(Separator);
_index = 0;
}
return _line[_index++];
}
public int NextInt() => int.Parse(Next());
public long NextLong() => long.Parse(Next());
public double NextDouble() => double.Parse(Next());
public decimal NextDecimal() => decimal.Parse(Next());
public char NextChar() => Next()[0];
public char[] NextCharArray() => Next().ToCharArray();
public string[] Array()
{
_line = Console.ReadLine().Split(' ');
_index = _line.Length;
return _line;
}
public int[] IntArray() => Array().Select(int.Parse).ToArray();
public long[] LongArray() => Array().Select(long.Parse).ToArray();
public double[] DoubleArray() => Array().Select(double.Parse).ToArray();
public decimal[] DecimalArray() => Array().Select(decimal.Parse).ToArray();
}
}