#!/usr/bin/python3.8 import sys read = sys.stdin.buffer.read1 readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines import numpy as np MOD = 10 ** 9 + 7 N = int(read()) def prime_table(N): is_prime = np.zeros(N, np.bool) is_prime[2] = 1 is_prime[3::2] = 1 for p in range(3, N, 2): if p * p >= N: break if is_prime[p]: is_prime[p * p:: p + p] = 0 primes = np.where(is_prime)[0] return is_prime, primes def mobius_table(N, primes): mu = np.ones(N, np.int8) mu[0] = 0 for p in primes: mu[p::p] *= - 1 for p in primes: pp = p * p if pp >= N: break mu[pp::pp] = 0 return mu def F(N): """return sum(|x| + |y|) for lattice points (x,y), satisfying x^2 + y^2 <= N""" x_max = int(N ** .5) x = np.arange(1, x_max + 1, dtype=np.int64) y_max = np.sqrt(N - x * x).astype(int) S_xplus = (x * (1 + 2 * y_max)).sum() % MOD return S_xplus def f(N): Nsq = int(N ** .5) is_prime, primes = prime_table(Nsq + 10) mu = mobius_table(Nsq + 10, primes) mu_d = mu * np.arange(Nsq + 10) mu_d_cum = mu_d.cumsum() % MOD M = int(N ** (1 / 3)) x = 0 for d in range(1, N + 1): n = N // (d * d) if n <= M: break x += mu_d[d] * F(n) x %= MOD for n in range(1, M + 1): dr = int((N // n) ** .5) dl = int((N // (n + 1)) ** .5) x += (mu_d_cum[dr] - mu_d_cum[dl]) * F(n) % MOD return (24 * x - 16) % MOD print(f(N))