#include using namespace std; using lint = long long; using lint128 = __int128_t; const lint mod = 998244353; #define all(x) (x).begin(), (x).end() #define bitcount(n) __builtin_popcountl((lint)(n)) #define fcout cout << fixed << setprecision(15) #define highest(x) (63 - __builtin_clzl(x)) template inline void YES(T condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; } template inline void Yes(T condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; } template inline void assert_NO(T condition){ if(!condition){ cout << "NO" << endl; exit(0); } } template inline void assert_No(T condition){ if(!condition){ cout << "No" << endl; exit(0); } } template inline void assert_minus_1(T condition){ if(!condition){ cout << -1 << endl; exit(0); } } lint power(lint base, lint exponent, lint module){ if(exponent & 1){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ lint root_ans = power(base, exponent >> 1, module); return root_ans * root_ans % module; }else{ return 1; }} lint128 power128(lint128 base, lint128 exponent, lint128 module){ if(exponent & 1){ return power128(base, exponent - 1, module) * base % module; }else if(exponent){ lint128 root_ans = power128(base, exponent >> 1, module); return root_ans * root_ans % module; }else{ return 1; }} struct position{ int y, x; }; position mv[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; // double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); } template string to_string(pair x){ return to_string(x.first) + "," + to_string(x.second); } string to_string(string x){ return x; } template void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++) ans += to_string(*i) + " "; if(!ans.empty()) ans.pop_back(); cout << ans << endl; } template void cins(itr first, itr last){ for(auto i = first; i != last; i++){ cin >> (*i); } } template T gcd_calc(T a, T b){ if(b){ return gcd_calc(b, a % b); }else{ return a; }} template T gcd(T a, T b){ if(a < b) swap(a, b); return gcd_calc(a, b); } template T lcm(T a, T b){ return a / gcd(a, b) * b; } struct combination{ vector fact, inv; combination(int sz) : fact(sz + 1), inv(sz + 1){ fact[0] = 1; for(int i = 1; i <= sz; i++){ fact[i] = fact[i - 1] * i % mod; } inv[sz] = power(fact[sz], mod - 2, mod); for(int i = sz - 1; i >= 0; i--){ inv[i] = inv[i + 1] * (i + 1) % mod; } } lint C(int p, int q) const{ if(q < 0 || p < q) return 0; return (fact[p] * inv[q] % mod * inv[p - q] % mod); } }; template bool next_sequence(itr first, itr last, int max_bound){ itr now = last; while(now != first){ now--; (*now)++; if((*now) == max_bound){ (*now) = 0; }else{ return true; } } return false; } template bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } return 0; } template bool chmin(T &a, const T &b){ if(b < a){ a = b; return 1; } return 0; } inline int at(int x, int k){ return (x >> k) & 1; } random_device rnd; #define rep(i, n) for(int i = 0; i < n; i++) double P; double prob(int mass){ return pow(P, mass + 1); } int main(){ lint N, M; cin >> N >> M >> P; if(M == 1){ swap(N, M); } double ans = 0; if(N == 1 && M == 1){ ans += prob(0) * 1; }else if(N == 1){ ans += prob(1) * 2 + prob(2) * (M - 2); }else{ ans += prob(2) * 4 + prob(3) * (N - 2 + M - 2) * 2 + prob(4) * (N - 2) * (M - 2); } fcout << ans << endl; }