/* このコード、と~おれ! Be accepted! ∧_∧  (。・ω・。)つ━☆・*。 ⊂   ノ    ・゜+.  しーJ   °。+ *´¨)          .· ´¸.·*´¨) ¸.·*¨)           (¸.·´ (¸.·'* ☆ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*多倍長整数/cpp_intで宣言 #include using namespace boost::multiprecision; */ //#pragma gcc target ("avx2") //#pragma gcc optimization ("o3") //#pragma gcc optimization ("unroll-loops") #define rep(i, n) for(int i = 0; i < (n); ++i) #define rep1(i, n) for(int i = 1; i <= (n); ++i) #define rep2(i, n) for(int i = 2; i < (n); ++i) #define repr(i, n) for(int i = n; i >= 0; --i) #define reprm(i, n) for(int i = n - 1; i >= 0; --i) #define printynl(a) printf(a ? "yes\n" : "no\n") #define printyn(a) printf(a ? "Yes\n" : "No\n") #define printYN(a) printf(a ? "YES\n" : "NO\n") #define printim(a) printf(a ? "possible\n" : "imposible\n") #define printdb(a) printf("%.50lf\n", a) //少数出力 #define printLdb(a) printf("%.50Lf\n", a) //少数出力 #define printdbd(a) printf("%.16lf\n", a) //少数出力(桁少なめ) #define prints(s) printf("%s\n", s.c_str()) //string出力 #define all(x) (x).begin(), (x).end() #define allsum(a, b, c) ((a + b) * c / 2.0) //等差数列の和、初項,末項,項数 #define pb push_back #define priq priority_queue #define rpriq priq, greater> #define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI) #define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L) #define Please return #define AC 0 #define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) /*(a, b) から (c, d) のマンハッタン距離 */ using ll = long long; constexpr int INF = 1073741823; constexpr int MINF = -1073741823; constexpr ll LINF = ll(4661686018427387903); constexpr ll MOD = 1000000007; const long double PI = acosl(-1.0L); using namespace std; void scans(string& str) { char c; str = ""; scanf("%c", &c); if (c == '\n')scanf("%c", &c); while (c != '\n' && c != -1 && c != ' ') { str += c; scanf("%c", &c); } } void scanc(char& str) { char c; scanf("%c", &c); if (c == -1)return; while (c == '\n') { scanf("%c", &c); } str = c; } double acot(double x) { return PI / 2 - atan(x); } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } ll lcm(ll number1, ll number2) { return number1 / gcd(number1, number2) * number2; } ll LSB(ll n) { return (n & (-n)); } /*-----------------------------------------ここからコード-----------------------------------------*/ //セグ木/0-indexed/非再帰/(大きさ, 単位元)で初期化 template struct segtree { //木を配列であらわしたもの vector seg; //木の1/2の大きさ int siz; //単位元 const T unit; //比較関数の型 using F = function; //マージする関数 const F f; //n の大きさ, a (単位元) で segtree を初期化する segtree(int n, const T a, const F f) : unit(a), f(f) { siz = 1; while (siz < n)siz <<= 1; seg.assign(2 * siz - 1, unit); --siz; } //k (0-indexed) 番目に t を代入 void set(int k, const T& t) { seg[k + siz] = t; } //f によって木を構築 void build() { for (int i = siz - 1; i >= 0; --i) seg[i] = f(seg[i * 2 + 1], seg[i * 2 + 2]); } //i 番目の要素を返す T operator[](const int i) { return seg[i + siz]; } //k 番目の値を a に更新,更新に使う二項演算 void update(int k, T a) { k += siz; //必要であればここを変える seg[k] = a; while (k > 0) { k = ((k - 1) >> 1); seg[k] = f(seg[k * 2 + 1], seg[k * 2 + 2]); } } //[a, b) について f した結果を返す T query(int a, int b) { T l = unit, r = unit; for (a += siz, b += siz; a < b; a >>= 1, b >>= 1) { if (!(a & 1))l = f(l, seg[a++]); if (!(b & 1))r = f(seg[--b], r); } return f(l, r); } //[start, end) について、[l, r) を調べながら k 番目が check を満たすか二分探索 最後が true なら left, false なら right fの逆演算 template int find(const int start, const int end, int l, int r, int k, const C check, T& checknum, const bool b, const function revf) { //cerr << checknum << '\n'; //範囲外またはそこがすでに満たさないとき //cerr << k << ',' << checknum << '\n'; if (start <= l && r <= end && !check(seg[k], checknum)) { checknum = revf(checknum, seg[k]); return -1; } if ((r <= start || l >= end)) { return -1; } //既に葉 if (k >= siz) { return k - siz; } int res; if (b) { //左側を調べる res = find< C >(start, end, l, ((l + r) >> 1), (k << 1) + 1, check, checknum, b, revf); //左側が適してたらそれが答え if (res != -1)return (res); return find< C >(start, end, ((l + r) >> 1), r, (k << 1) + 2, check, checknum, b, revf); } else { //右側を調べる res = find< C >(start, end, ((l + r) >> 1), r, (k << 1) + 2, check, checknum, b, revf); //右側が適してたらそれが答え if (res != -1)return (res); return find< C >(start, end, l, ((l + r) >> 1), (k << 1) + 1, check, checknum, b, revf); } } template int find_left(int start, int end, const C check, T checknum, function revf) { return find< C >(start, end, 0, siz + 1, 0, check, checknum, true, revf); } template int find_right(int start, int end, const C check, T checknum, function revf) { return find< C >(start, end, 0, siz + 1, 0, check, checknum, false, revf); } }; vector> f(const vector>& b, const vector>& a) { vector> res(3, vector(3)); res[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0]; res[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1]; res[0][2] = a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2]; res[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0]; res[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1]; res[1][2] = a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2]; res[2][0] = 0; res[2][1] = 0; res[2][2] = 1; return res; } int main() { int n; scanf("%d", &n); vector> tmp(3, vector(3)); rep(i, 3)rep(j, 3)tmp[i][j] = (i == j); segtree>> tree(n, tmp, f); long double p, q, r; rep(i, n) { scanf("%Lf%Lf%Lf", &p, &q, &r); r = deg_to_rad(r); tmp[0][0] = cosl(r); tmp[0][1] = -sinl(r); tmp[0][2] = q * sinl(r) - p * cosl(r) + p; tmp[1][0] = sinl(r); tmp[1][1] = cosl(r); tmp[1][2] = -p * sinl(r) - q * cosl(r) + q; tmp[2][0] = 0; tmp[2][1] = 0; tmp[2][2] = 1; tree.set(i, tmp); } tree.build(); int Q; scanf("%d", &Q); int s, t; long double x, y; rep(i, Q) { scanf("%d%d%Lf%Lf", &s, &t, &x, &y); --s; tmp = tree.query(s, t); printf("%Lf %Lf\n", tmp[0][2] + tmp[0][0] * x + tmp[0][1] * y, tmp[1][2] + tmp[1][0] * x + tmp[1][1] * y); } Please AC; }