#![allow(unused)] use kyoproio::*; use std::{ io::{self, prelude::*}, collections::*, iter, mem::{replace, swap}, }; fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(50 * 1024 * 1024) .spawn(solve)? .join() .unwrap(); Ok(()) } fn solve() { let stdin = io::stdin(); let mut kin = KInput::new(stdin.lock()); let stdout = io::stdout(); let mut out = io::BufWriter::new(stdout.lock()); macro_rules! output { ($($args:expr),+) => { write!(&mut out, $($args),+) }; } macro_rules! outputln { ($($args:expr),+) => { output!($($args),+); outputln!() }; () => { output!("\n"); if cfg!(debug_assertions) { out.flush(); } } } let (n, m): (usize, usize) = kin.input(); let mut g: Vec<_> = iter::repeat_with(Vec::new).take(2 * n + 1).collect(); for _ in 0..m { let (a, b, c): (usize, usize, u64) = kin.input(); g[a].push((b, c)); g[a].push((n + b, 0)); g[n + a].push((n + b, c)); g[b].push((a, c)); g[b].push((n + a, 0)); g[n + b].push((n + a, c)); } let dist = dijkstra(&g, 1); outputln!("{}", 0); for i in 2..=n { // eprintln!("{},{}", dist[i], dist[n + i]); outputln!("{}", dist[i] + dist[n + i]); } } pub fn dijkstra(g: &[Vec<(usize, u64)>], s: usize) -> Vec { use std::cmp::Reverse; let mut dist = vec![u64::max_value(); g.len()]; dist[s] = 0; let mut pq = BinaryHeap::new(); pq.push((Reverse(0), s)); while let Some((Reverse(d), u)) = pq.pop() { if d <= dist[u] { for &(v, c) in &g[u] { if d + c < dist[v] { pq.push((Reverse(d + c), v)); dist[v] = d + c; } } } } dist } // ----------------------------------------------------------------------------- pub mod kyoproio { #![warn(unused)] use std::io::prelude::*; pub trait Input: Sized { fn str(&mut self) -> &str; fn bytes(&mut self) -> &[u8] { self.str().as_ref() } fn input(&mut self) -> T { self.input_fallible().expect("input error") } fn input_fallible(&mut self) -> Result { T::input(self) } fn iter(&mut self) -> Iter { Iter { input: self, _t: std::marker::PhantomData, } } fn seq>(&mut self, n: usize) -> B { self.iter().take(n).collect() } } pub struct KInput { src: R, buf: String, pos: usize, } impl KInput { pub fn new(src: R) -> Self { Self { src, buf: String::with_capacity(1024), pos: 0, } } } impl Input for KInput { fn str(&mut self) -> &str { loop { if self.pos >= self.buf.len() { self.pos = 0; self.buf.clear(); if self.src.read_line(&mut self.buf).expect("io error") == 0 { return &self.buf; } } let range = self.pos ..self.buf[self.pos..] .find(|c: char| c.is_ascii_whitespace()) .map(|i| i + self.pos) .unwrap_or_else(|| self.buf.len()); self.pos = range.end + 1; if range.end > range.start { return &self.buf[range]; } } } } pub struct Iter<'a, T, I> { input: &'a mut I, _t: std::marker::PhantomData, } impl<'a, T: InputParse, I: Input> Iterator for Iter<'a, T, I> { type Item = T; fn next(&mut self) -> Option { Some(self.input.input()) } } type Result = std::result::Result>; pub trait InputParse: Sized { fn input(input: &mut I) -> Result; } macro_rules! input_from_str_impls { { $($T:ty)* } => { $(impl InputParse for $T { fn input(input: &mut I) -> Result { input.str().parse::<$T>().map_err(|e| e.into()) } })* }; } input_from_str_impls! { String char bool f32 f64 isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128 } macro_rules! input_tuple_impls { ($H:ident, $($T:ident),+) => { impl<$H: InputParse, $($T: InputParse),+> InputParse for ($H, $($T),+) { fn input(input: &mut I) -> Result { Ok(($H::input(input)?, $($T::input(input)?),+)) } } input_tuple_impls!($($T),+); }; ($H:ident) => {}; } input_tuple_impls!(A, B, C, D, E, F, G); /* impl InputParse for [T; N] { fn input(input: &mut I) -> Result { let mut a = std::mem::MaybeUninit::<[T; N]>::uninit(); for i in 0..N { match T::input(input) { Ok(v) => unsafe { std::ptr::write(&mut (*a.as_mut_ptr())[i], v) }, Err(e) => unsafe { std::ptr::drop_in_place(&mut (*a.as_mut_ptr())[..i]); return Err(e); }, } } Ok(unsafe { a.assume_init() }) } } */ }