#include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _overload3(_1,_2,_3,name,...) name #define _rep(i,n) repi(i,0,n) #define repi(i,a,b) for(ll i=ll(a);ibool chmax(T &a, const T &b) { if (abool chmin(T &a, const T &b) { if (b void cins(itr first,itr last){ for (auto i = first;i != last;i++){ cin >> (*i); } } template void array_output(itr start,itr goal){ string ans = "",k = " "; for (auto i = start;i != goal;i++) ans += to_string(*i)+k; if (!ans.empty()) ans.pop_back(); PRINT(ans); } ll gcd(ll a, ll b) { return a ? gcd(b%a,a) : b; } const ll INF = 1e16; const ll MOD = 1000000007; typedef pair P; const ll MAX = 1005; constexpr ll nx[4] = {1,0,-1,0}; constexpr ll ny[4] = {0,1,0,-1}; class Ford_Fulkerson{ private: struct edge{ ll to,cap,rev; }; ll siz; vector> edges; vector done; public: Ford_Fulkerson(ll n){ edges.resize(n); done.assign(n,0); siz = n; } void add_edge(ll from,ll to,ll cap){ edges[from].push_back((edge){to,cap,(ll)edges[to].size()}); edges[to].push_back((edge){from,0,(ll)edges[from].size()-1}); } ll dfs(ll v,ll t,ll f){ if (v == t) return f; done[v] = true; for(auto &e:edges[v]){ if (e.cap > 0 && !done[e.to]){ ll d = dfs(e.to,t,min(f,e.cap)); if (d > 0){ e.cap -= d; edges[e.to][e.rev].cap += d; return d; } } } return 0; } ll max_flow(ll s,ll t){ ll flow = 0; while(true){ done.assign(siz,0); ll f = dfs(s,t,INF); if (f == 0) return flow; flow += f; } } }; int main(){ cin.tie(0); ios::sync_with_stdio(false); ll n,m,d; cin >> n >> m >> d; ll from,to,p,q,c; Ford_Fulkerson g(2*m+2); vector> arrive(n); vector> depart(n); rep(i,m){ cin >> from >> to >> p >> q >> c; --from; --to; depart[from].push_back(P(2*i,p)); arrive[to].push_back(P(2*i+1,q+d)); g.add_edge(2*i,2*i+1,c); } rep(i,n){ for(P p1:arrive[i]){ for(P p2:depart[i]){ ll start,goal; tie(start,p) = p1; tie(goal,q) = p2; if (p <= q){ g.add_edge(start,goal,INF); } } } } for(P p2:depart[0]){ ll s; tie(s,p) = p2; g.add_edge(2*m,s,INF); } for(P p1:arrive[n-1]){ ll s; tie(s,p) = p1; g.add_edge(s,2*m+1,INF); } PRINT(g.max_flow(2*m,2*m+1)); }