#![allow(unused)] use kyoproio::*; use std::{ collections::*, io::{self, prelude::*}, iter, mem::{replace, swap}, }; fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(10 * 1024 * 1024) .spawn(solve)? .join() .unwrap(); Ok(()) } fn solve() { let stdin = io::stdin(); let mut kin = KInput::new(stdin.lock()); let stdout = io::stdout(); let mut out = io::BufWriter::new(stdout.lock()); macro_rules! output {($($args:expr),+) => { write!(&mut out, $($args),+) }; } macro_rules! outputln { ($($args:expr),+) => { output!($($args),+); outputln!(); }; () => { output!("\n"); if cfg!(debug_assertions) { out.flush(); } } } let (n, m, x): (usize, usize, u64) = kin.input(); let mut mat = vec![[0u64; W]; 30 + m]; for i in 0..30 { mat[i][n / W] |= (x >> i & 1) << n % W; } for j in 0..n { let a: u64 = kin.input(); for i in 0..30 { mat[i][j / W] |= (a >> i & 1) << j % W; } } for i in 0..m { let (t, l, r): (u64, usize, usize) = kin.input(); let i = i + 30; mat[i][n / W] |= t << n % W; for j in l - 1..r { mat[i][j / W] |= 1 << j % W; } } let rank = elimination_f2(&mut mat); 'outer: for r in &mut mat { if r[n / W] & 1 << n % W > 0 { r[n / W] ^= 1 << n % W; for j in 0..W { if r[j] != 0 { continue 'outer; } } outputln!("0"); return; } } outputln!("{}", mod_pow(2, (n - rank) as i64, 1e9 as i64 + 7)); } const W: usize = 6; fn elimination_f2(a: &mut [[u64; W]]) -> usize { let n = a.len(); let mut k = 0; for i in 0..n { if let Some(j) = (k..n).find(|&j| a[j][i / W] >> i % W & 1 != 0) { a.swap(k, j); for l in (0..n).filter(|&l| l != k) { if a[l][i / W] >> i % W & 1 > 0 { for b in 0..W { a[l][b] ^= a[k][b]; } } } k += 1; } } k } pub fn mod_pow(mut a: i64, mut b: i64, m: i64) -> i64 { let mut y = 1; while b > 0 { if b & 1 == 1 { y = y * a % m; } a = a * a % m; b >>= 1; } y } // ----------------------------------------------------------------------------- pub mod kyoproio { #![warn(unused)] use std::io::prelude::*; pub trait Input { fn str(&mut self) -> &str; fn bytes(&mut self) -> &[u8] { self.str().as_ref() } fn input(&mut self) -> T { T::input(self) } fn iter(&mut self) -> Iter { Iter(self, std::marker::PhantomData) } fn seq>(&mut self, n: usize) -> B { self.iter().take(n).collect() } } pub struct KInput { src: R, buf: String, pos: usize, } impl KInput { pub fn new(src: R) -> Self { Self { src, buf: String::with_capacity(1024), pos: 0, } } } impl Input for KInput { fn str(&mut self) -> &str { loop { if self.pos >= self.buf.len() { self.pos = 0; self.buf.clear(); if self.src.read_line(&mut self.buf).expect("io error") == 0 { return &self.buf; } } let range = self.pos ..self.buf[self.pos..] .find(|c: char| c.is_ascii_whitespace()) .map(|i| i + self.pos) .unwrap_or_else(|| self.buf.len()); self.pos = range.end + 1; if range.end > range.start { return &self.buf[range]; } } } } pub struct Iter<'a, T, I: ?Sized>(&'a mut I, std::marker::PhantomData<*const T>); impl<'a, T: InputParse, I: Input + ?Sized> Iterator for Iter<'a, T, I> { type Item = T; fn next(&mut self) -> Option { Some(self.0.input()) } } pub trait InputParse: Sized { fn input(input: &mut I) -> Self; } macro_rules! from_str_impl { { $($T:ty)* } => { $(impl InputParse for $T { fn input(input: &mut I) -> Self { input.str().parse::<$T>().expect("parse error") } })* }; } from_str_impl! { String char bool f32 f64 isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128 } macro_rules! tuple_impl { ($H:ident $($T:ident)*) => { impl<$H: InputParse, $($T: InputParse),*> InputParse for ($H, $($T),*) { fn input(input: &mut I) -> Self { ($H::input(input), $($T::input(input)),*) } } tuple_impl!($($T)*); }; () => {}; } tuple_impl!(A B C D E F G); }