#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; // const int MOD = 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); } } iosetup; using CostType = int; struct Edge { int src, dst; CostType cost; Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {} inline bool operator<(const Edge &x) const { return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src; } inline bool operator<=(const Edge &x) const { return !(x < *this); } inline bool operator>(const Edge &x) const { return x < *this; } inline bool operator>=(const Edge &x) const { return !(*this < x); } }; struct LCADoubling { vector depth; vector dist; LCADoubling(const vector> &graph) : graph(graph) { n = graph.size(); depth.resize(n); dist.resize(n); while ((1 << table_h) <= n) ++table_h; parent.resize(table_h, vector(n)); } void build(int root = 0) { dfs(-1, root, 0, 0); for (int i = 0; i + 1 < table_h; ++i) REP(ver, n) { parent[i + 1][ver] = (parent[i][ver] == -1 ? -1 : parent[i][parent[i][ver]]); } } int query(int u, int v) { if (depth[u] > depth[v]) swap(u, v); REP(i, table_h) { if ((depth[v] - depth[u]) >> i & 1) v = parent[i][v]; } if (u == v) return u; for (int i = table_h - 1; i >= 0; --i) { if (parent[i][u] != parent[i][v]) { u = parent[i][u]; v = parent[i][v]; } } return parent[0][u]; } CostType distance(int u, int v) { return dist[u] + dist[v] - dist[query(u, v)] * 2; } private: int n, table_h = 1; vector> graph; vector> parent; void dfs(int par, int ver, int now_depth, CostType now_dist) { depth[ver] = now_depth; dist[ver] = now_dist; parent[0][ver] = par; for (const Edge &e : graph[ver]) { if (e.dst != par) dfs(ver, e.dst, now_depth + 1, now_dist + e.cost); } } }; template struct SegmentTree { using Fn = function; SegmentTree(int sz, Fn fn, const Monoid UNITY) : fn(fn), UNITY(UNITY) { init(sz); dat.assign(n << 1, UNITY); } SegmentTree(const vector &a, Fn fn, const Monoid UNITY) : fn(fn), UNITY(UNITY) { int a_sz = a.size(); init(a_sz); dat.resize(n << 1); REP(i, a_sz) dat[i + n] = a[i]; for (int i = n - 1; i > 0; --i) dat[i] = fn(dat[i << 1], dat[(i << 1) + 1]); } void update(int node, Monoid val) { node += n; dat[node] = val; while (node >>= 1) dat[node] = fn(dat[node << 1], dat[(node << 1) + 1]); } Monoid query(int left, int right) { Monoid l_res = -1, r_res = -1; for (left += n, right += n; left < right; left >>= 1, right >>= 1) { if (left & 1) l_res = l_res == -1 ? dat[left++] : fn(l_res, dat[left++]); if (right & 1) r_res = r_res == -1 ? dat[--right] : fn(dat[--right], r_res); } if (l_res == -1) return r_res; if (r_res == -1) return l_res; return fn(l_res, r_res); } Monoid operator[](const int idx) const { return dat[idx + n]; } private: int n = 1; Fn fn; const Monoid UNITY; vector dat; void init(int sz) { while (n < sz) n <<= 1; } }; struct HLD { vector parent, subtree, id, inv, head; vector cost; HLD(const vector> &graph, int root = 0) : graph(graph) { int n = graph.size(); parent.assign(n, -1); subtree.assign(n, 1); id.resize(n); inv.resize(n); head.resize(n); dfs1(root); head[root] = root; int now_id = 0; dfs2(root, now_id); } void v_update(int u, int v, function f) { while (true) { if (id[u] > id[v]) swap(u, v); f(max(id[head[v]], id[u]), id[v] + 1); if (head[u] == head[v]) return; v = parent[head[v]]; } } template T v_query(int u, int v, function f, function g, const T UNITY) { T left = UNITY, right = UNITY; while (true) { if (id[u] > id[v]) { swap(u, v); swap(left, right); } left = g(left, f(max(id[head[v]], id[u]), id[v] + 1)); if (head[u] == head[v]) break; v = parent[head[v]]; } return g(left, right); } void subtree_v_update(int ver, function f) { f(id[ver], id[ver] + subtree[ver]); } template T subtree_v_query(int ver, function f) { return f(id[ver], id[ver] + subtree[ver]); } void e_update(int u, int v, function f) { while (true) { if (id[u] > id[v]) swap(u, v); if (head[u] == head[v]) { f(id[u], id[v]); break; } else { f(id[head[v]] - 1, id[v]); v = parent[head[v]]; } } } template T e_query(int u, int v, function f, function g, const T UNITY) { T left = UNITY, right = UNITY; while (true) { if (id[u] > id[v]) { swap(u, v); swap(left, right); } if (head[u] == head[v]) { left = g(left, f(id[u], id[v])); break; } else { left = g(left, f(id[head[v]] - 1, id[v])); v = parent[head[v]]; } } return g(left, right); } void subtree_e_update(int ver, function f) { f(id[ver], id[ver] + subtree[ver] - 1); } template T subtree_e_query(int ver, function f) { return f(id[ver], id[ver] + subtree[ver] - 1); } int lca(int u, int v) { while (true) { if (id[u] > id[v]) swap(u, v); if (head[u] == head[v]) return u; v = parent[head[v]]; } } private: vector> graph; void dfs1(int ver) { for (Edge &e : graph[ver]) { if (e.dst != parent[ver]) { parent[e.dst] = ver; dfs1(e.dst); subtree[ver] += subtree[e.dst]; if (subtree[e.dst] > subtree[graph[ver].front().dst]) swap(e, graph[ver].front()); } } } void dfs2(int ver, int &now_id) { id[ver] = now_id++; inv[id[ver]] = ver; for (const Edge &e : graph[ver]) { if (e.dst != parent[ver]) { head[e.dst] = (e.dst == graph[ver].front().dst ? head[ver] : e.dst); cost.emplace_back(e.cost); dfs2(e.dst, now_id); } } } }; template struct SparseTable { using Fn = function; SparseTable() {} SparseTable(const vector &a, Fn fn, MeetSemilattice UNITY = 0) { init(a, fn); } void init(const vector &a, Fn fn_) { fn = fn_; int n = a.size(), table_h = 0; lg.assign(n + 1, 0); FOR(i, 2, n + 1) lg[i] = lg[i >> 1] + 1; while ((1 << table_h) <= n) ++table_h; dat.assign(table_h, vector(n)); REP(j, n) dat[0][j] = a[j]; FOR(i, 1, table_h) for (int j = 0; j + (1 << i) <= n; ++j) { dat[i][j] = fn(dat[i - 1][j], dat[i - 1][j + (1 << (i - 1))]); } } MeetSemilattice query(int left, int right) { assert(left < right); int h = lg[right - left]; return fn(dat[h][left], dat[h][right - (1 << h)]); } private: Fn fn; vector lg; vector> dat; }; int main() { int n, k, q; cin >> n >> k >> q; vector c(n), a(k); REP(i, n) cin >> c[i]; REP(i, k) cin >> a[i], --a[i]; // REP(i, k) cout << a[i] << " \n"[i + 1 == k]; vector> graph(n); REP(_, n - 1) { int e, f; cin >> e >> f; --e; --f; graph[f].emplace_back(f, e, 1); graph[e].emplace_back(e, f, 1); } LCADoubling lca(graph); lca.build(0); SegmentTree seg(k, [&](int l, int r) { return lca.query(l, r); }, 0); REP(i, k) seg.update(i, a[i]); HLD hld(graph); vector vigor(n); REP(i, n) vigor[i] = c[hld.id[i]]; SparseTable st(vigor, [](int l, int r) { return max(l, r); }); while (q--) { int t; cin >> t; if (t == 1) { int x, y; cin >> x >> y; --x; --y; seg.update(x, y); } else if (t == 2) { int l, r; cin >> l >> r; --l; --r; int ver = seg.query(l, r + 1); cout << hld.v_query(0, ver, [&](int L, int R) { return st.query(L, R); }, [](int L, int R) { return max(L, R); }, 0) << '\n'; } } return 0; }