# coding: utf-8 # Your code here! def Euler_tour_vertex(g,root): n = len(g) parent = [-1]*n ls = [0]*n rs = [0]*n cnt = 0 q = [root] while q: v = q.pop() if v >= 0: #行きがけ ls[v] = cnt; cnt += 1 q.append(-v-1) for c in g[v]: if c != parent[v]: parent[c] = v q.append(c) else: #帰りがけ rs[-v-1] = cnt return ls,rs class segment_tree: def __init__(self, N, operator_M, e_M): self.op_M = operator_M self.e_M = e_M self.N0 = 1<<(N-1).bit_length() self.dat = [self.e_M]*(2*self.N0) # 長さNの配列 initial で初期化 def build(self, initial): self.dat[self.N0:self.N0+len(initial)] = initial[:] for k in range(self.N0-1,0,-1): self.dat[k] = self.op_M(self.dat[2*k], self.dat[2*k+1]) # a_k の値を x に更新 def update(self,k,x): k += self.N0 self.dat[k] = x k //= 2 while k: self.dat[k] = self.op_M(self.dat[2*k], self.dat[2*k+1]) k //= 2 # 区間[L,R]をopでまとめる def query(self,L,R): L += self.N0; R += self.N0 + 1 sl = sr = self.e_M while L < R: if R & 1: R -= 1 sr = self.op_M(self.dat[R],sr) if L & 1: sl = self.op_M(sl,self.dat[L]) L += 1 L >>= 1; R >>= 1 return self.op_M(sl,sr) def get(self, k): #k番目の値を取得。query[k,k]と同じ return self.dat[k+self.N0] class segment_tree_dual: def __init__(self, N, compose, funcval, ID_M=None): self.compose = compose self.ID_M = ID_M self.funcval = funcval self.height = (N-1).bit_length() #木の段数 self.N0 = 1<= N self.laz = [self.ID_M]*(2*self.N0) #作用素の木 self.val = None #値の配列 #初期値の配列を作る def build(self,initial): self.val = initial[:] #laz[k] を子に伝える、k が一番下の場合は laz[k] を val に反映する def propagate(self,k): if self.laz[k] == self.ID_M: return; if self.N0 <= k: self.val[k-self.N0] = self.funcval(self.val[k-self.N0], self.laz[k]) self.laz[k] = self.ID_M else: self.laz[(k<<1) ] = self.compose(self.laz[(k<<1) ],self.laz[k]); self.laz[(k<<1)+1] = self.compose(self.laz[(k<<1)+1],self.laz[k]); self.laz[k] = self.ID_M; # 遅延をすべて解消する def propagate_all(self): upto = self.N0 + len(self.val) for i in range(1,upto): self.propagate(i) # laz[k]およびその上に位置する作用素をすべて伝播 def thrust(self,k): for i in range(self.height,-1,-1): self.propagate(k>>i) # 区間[l,r]に関数 f を作用 def update(self, L,R,f): L += self.N0; R += self.N0+1 #登りながら関数 f を合成 while L < R: if R & 1: R -= 1 self.laz[R] = self.compose(self.laz[R],f) if L & 1: self.laz[L] = self.compose(self.laz[L],f) L += 1 L >>= 1; R >>= 1 # values[k] を取得。 def point_get(self, k): res = self.val[k] k += self.N0 while k: if self.laz[k] != self.ID_M: res = self.funcval(res, self.laz[k]) k //= 2 return res # values[k] = x 代入する def point_set(self, k): self.thrust(k+self.N0) self.val[k] = x import sys readline = sys.stdin.readline read = sys.stdin.read n,k,q = [int(i) for i in readline().split()] c = [int(i) for i in readline().split()] a = [int(i) for i in readline().split()] g = [[] for _ in range(n)] for i in range(n-1): e,f = [int(i)-1 for i in readline().split()] #g[e].append(f) g[f].append(e) ls,rs = Euler_tour_vertex(g,0) for i in range(n): rs[i] -= 1 compose = max funcval = max ID_M = 0 fun = segment_tree_dual(2*n, compose, funcval, ID_M) fun.build([0]*2*n) for lsi,rsi,ci in zip(ls,rs,c): fun.update(2*lsi,2*rsi,ci) fun.propagate_all() INF = 10**9 posl = segment_tree(k,min,INF) posr = segment_tree(k,max,0) res = segment_tree(2*n,min,INF) res.build(fun.val) for i,ai in enumerate(a): posl.update(i,2*ls[ai-1]) posr.update(i,2*rs[ai-1]) #print(g) #print(ls,rs) #print(res.dat) for _ in range(q): t,x,y = [int(i) for i in readline().split()] x -= 1 y -= 1 if t==1: #print("move",x,y,ls[y],rs[y]) posl.update(x,2*ls[y]) posr.update(x,2*rs[y]) else: #print(posl.dat,posr.dat) L = posl.query(x,y) R = posr.query(x,y) #print(L,R,x,y) print(res.query(L,R))