#include "bits/stdc++.h" using namespace std; #define int long long #define FOR(i, a, b) for(int i=(a);i<(b);i++) #define RFOR(i, a, b) for(int i=(b-1);i>=(a);i--) #define REP(i, n) for(int i=0; i<(n); i++) #define RREP(i, n) for(int i=(n-1); i>=0; i--) #define REP1(i, n) for(int i=1; i<=(n); i++) #define RREP1(i, n) for(int i=(n); i>=1; i--) #define ALL(a) (a).begin(),(a).end() #define UNIQUE_SORT(l) sort(ALL(l)); l.erase(unique(ALL(l)), l.end()); #define CONTAIN(a, b) find(ALL(a), (b)) != (a).end() #define out(...) printf(__VA_ARGS__) int dxy[] = {0, 1, 0, -1, 0}; void solve(); signed main() { #if DEBUG std::ifstream in("input.txt"); std::cin.rdbuf(in.rdbuf()); #endif cin.tie(0); ios::sync_with_stdio(false); solve(); return 0; } /*================================*/ #if DEBUG #define SIZE 100 #else #define SIZE 123450 #endif int N,M,Q; /******************************** * * 平方分割 * *******************************/ class SquareRootDecomposition { vector T; // 多い方 vector< vector > I; // 単調増加 vector< vector > D; // 単調減少 vector MI; // 範囲最小 vector MA; // 範囲最大 int K; int size; public: SquareRootDecomposition(int size): size(size) { K = sqrt(size); T = vector(size, 0); I.resize(size/K+1); D.resize(size/K+1); MI.resize(size/K+1, LONG_LONG_MAX); MA.resize(size/K+1); } void set(int i, int v) { T[i]=v; } void update() { REP(i,T.size()) { int lk = i/K; if (I[lk].empty() || I[lk].back() < T[i]) I[lk].push_back(T[i]); if (D[lk].empty() || D[lk].back() > T[i]) D[lk].push_back(T[i]); MI[lk] = min(MI[lk], T[i]); MA[lk] = max(MA[lk], T[i]); } REP(i,D.size()) { reverse(ALL(D[i])); } } int query(int l) { if (l==size-1) return 0; int cnt = 0; int base = T[l]; if (l==3915) { out(""); } if (T[l] < T[l+1]) { // increase int ma = T[l]; l++; while(l % K != 0 && l < size) { if (base > T[l]) return cnt; if (ma < T[l]) { cnt++; ma = T[l]; } l++; } if (l == size) return cnt; int lk = l / K; while(lk < I.size()) { if (MI[lk] < base) { l = lk * K; while(l < size) { if (base > T[l]) return cnt; if (ma < T[l]) { cnt++; ma = T[l]; } l++; } } auto it = upper_bound(ALL(I[lk]), ma); if (it != I[lk].end()) { cnt += (I[lk].end() - it); ma = I[lk].back(); } lk++; } } else { // decrease int mi = T[l]; l++; while (l%K!=0 && l < size) { if (base < T[l]) return cnt; if (mi > T[l]) { cnt++; mi = T[l]; } l++; } if (l == size) return cnt; int lk = l/K; while(lk < D.size()) { if (MA[lk] > base) { l = lk * K; while(l < size) { if (base < T[l]) return cnt; if (mi > T[l]) { cnt++; mi = T[l]; } l++; } } auto it = lower_bound(ALL(D[lk]), mi); if (it != D[lk].begin()) { cnt += (it - D[lk].begin()); mi = D[lk].front(); } lk++; } } return cnt; } }; void solve() { cin>>N; auto S = *new SquareRootDecomposition(N); int a; REP(i,N) { cin>>a; S.set(i,a); } S.update(); int ans = 0; REP(i,N) { ans += S.query(i); } cout << ans << endl; }