#![allow(unused)] use kyoproio::*; use std::{ collections::*, io::{self, prelude::*}, iter, mem::{replace, swap}, }; fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(64 * 1024 * 1024) .spawn(solve)? .join() .unwrap(); Ok(()) } fn solve() { let stdin = io::stdin(); let mut kin = KInput::new(stdin.lock()); let stdout = io::stdout(); let mut out = io::BufWriter::new(stdout.lock()); macro_rules! output {($($args:expr),+) => { write!(&mut out, $($args),+) }; } macro_rules! outputln { ($($args:expr),+) => { output!($($args),+); outputln!(); }; () => { output!("\n"); if cfg!(debug_assertions) { out.flush(); } } } let (n, k, q): (usize, usize, usize) = kin.input(); let mut c: Vec = kin.seq(n); c.insert(0, 0); let mut a: Vec = kin.seq(k); a.insert(0, 0); let mut g = vec![vec![]; n + 1]; for _ in 0..n - 1 { let (u, v): (usize, usize) = kin.input(); g[v].push(u); } dfs(&g, &mut c, 1, 0); let hld = Hld::new(&g, 1); let mut st = SegmentTree::new(k + 1, || 0, |&u, &v| match (u, v) { (u, 0) => u, (0, v) => v, (u, v) => hld.lca(u, v) }); for i in 1..=k { st.set(i, a[i]); } for _ in 0..q { match kin.input() { '1' => { let (x, y): (usize, usize) = kin.input(); st.set(x, y); } '2' => { let (l, r): (usize, usize) = kin.input(); outputln!("{}", c[st.fold(l, r + 1)]); } _ => {} } } } fn dfs(g: &[Vec], c: &mut [u32], u: usize, p: usize) { for &v in g[u].iter().filter(|&&v| v != p) { c[v] = c[v].max(c[u]); dfs(g, c, v, u); } } #[derive(Debug)] pub struct Hld { head: Vec, par: Vec, tab: Vec, } pub type Graph = [Vec]; impl Hld { pub fn new(g: &Graph, root: usize) -> Self { let mut heavy = vec![!0; g.len()]; Self::dfs_heavy(g, &mut heavy, &mut vec![1; g.len()], root, !0); let mut hld = Hld { head: Vec::with_capacity(g.len()), par: Vec::with_capacity(g.len()), tab: vec![0; g.len()], }; hld.dfs_build(g, &heavy, root, !0, root); hld } fn dfs_heavy(g: &Graph, heavy: &mut [usize], size: &mut [usize], u: usize, p: usize) { let mut max = 0; for &v in g[u].iter().filter(|&&v| v != p) { Self::dfs_heavy(g, heavy, size, v, u); if size[v] > max { max = size[v]; heavy[u] = v; } size[u] += size[v]; } } fn dfs_build(&mut self, g: &Graph, heavy: &[usize], u: usize, p: usize, h: usize) { self.tab[u] = self.head.len(); self.head.push(h); self.par.push(p); if heavy[u] == !0 { return; } self.dfs_build(g, heavy, heavy[u], u, h); for &v in g[u].iter().filter(|&&v| v != p && v != heavy[u]) { self.dfs_build(g, heavy, v, u, v); } } pub fn lca(&self, mut u: usize, mut v: usize) -> usize { loop { if self.tab[u] > self.tab[v] { swap(&mut u, &mut v); } if self.head[self.tab[u]] == self.head[self.tab[v]] { return u; } v = self.par[self.tab[self.head[self.tab[v]]]]; } } } pub struct SegmentTree { zero: Z, f: F, a: Vec, } impl T, F: Fn(&T, &T) -> T> SegmentTree { pub fn new(n: usize, zero: Z, f: F) -> Self { let n = n.next_power_of_two() << 1; Self { a: std::iter::repeat_with(|| zero()).take(n).collect(), zero, f, } } pub fn len(&self) -> usize { self.a.len() >> 1 } pub fn set(&mut self, i: usize, value: T) { let mut i = self.len() + i; self.a[i] = value; while (i >> 1) > 0 { i >>= 1; self.a[i] = (self.f)(&self.a[i << 1], &self.a[(i << 1) + 1]); } } pub fn update(&mut self, i: usize, value: &T) -> &T { let j = self.len() + i; self.set(i, (self.f)(&value, &self.a[j])); &self.a[j] } // [l, r) pub fn fold(&self, l: usize, r: usize) -> T { let mut l = self.len() + l; let mut r = self.len() + r; let mut x = (self.zero)(); let mut y = (self.zero)(); while l != r { if l & 1 == 1 { x = (self.f)(&x, &self.a[l]); l += 1; } if r & 1 == 1 { r -= 1; y = (self.f)(&self.a[r], &y); } l >>= 1; r >>= 1; } (self.f)(&x, &y) } } // ----------------------------------------------------------------------------- pub mod kyoproio { #![warn(unused)] use std::io::prelude::*; pub trait Input { fn str(&mut self) -> &str; fn bytes(&mut self) -> &[u8] { self.str().as_ref() } fn input(&mut self) -> T { T::input(self) } fn iter(&mut self) -> Iter { Iter(self, std::marker::PhantomData) } fn seq>(&mut self, n: usize) -> B { self.iter().take(n).collect() } } pub struct KInput { src: R, buf: String, pos: usize, } impl KInput { pub fn new(src: R) -> Self { Self { src, buf: String::with_capacity(1024), pos: 0, } } } impl Input for KInput { fn str(&mut self) -> &str { loop { if self.pos >= self.buf.len() { self.pos = 0; self.buf.clear(); if self.src.read_line(&mut self.buf).expect("io error") == 0 { return &self.buf; } } let range = self.pos ..self.buf[self.pos..] .find(|c: char| c.is_ascii_whitespace()) .map(|i| i + self.pos) .unwrap_or_else(|| self.buf.len()); self.pos = range.end + 1; if range.end > range.start { return &self.buf[range]; } } } } pub struct Iter<'a, T, I: ?Sized>(&'a mut I, std::marker::PhantomData<*const T>); impl<'a, T: InputParse, I: Input + ?Sized> Iterator for Iter<'a, T, I> { type Item = T; fn next(&mut self) -> Option { Some(self.0.input()) } } pub trait InputParse: Sized { fn input(input: &mut I) -> Self; } impl InputParse for Vec { fn input(input: &mut I) -> Self { input.bytes().to_owned() } } macro_rules! from_str_impl { { $($T:ty)* } => { $(impl InputParse for $T { fn input(input: &mut I) -> Self { input.str().parse::<$T>().expect("parse error") } })* }; } from_str_impl! { String char bool f32 f64 isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128 } macro_rules! tuple_impl { ($H:ident $($T:ident)*) => { impl<$H: InputParse, $($T: InputParse),*> InputParse for ($H, $($T),*) { fn input(input: &mut I) -> Self { ($H::input(input), $($T::input(input)),*) } } tuple_impl!($($T)*); }; () => {}; } tuple_impl!(A B C D E F G); }