import itertools def read_data(): N, V = map(int, input().split()) Cs = list(map(int, input().split())) return N, V, Cs def select_most_efficient(Ds): n = 0 cost = 1 records = [] for k, d in enumerate(Ds, 1): det = k * cost - n * d if det > 0: n = k cost = d records = [k - 1] elif det == 0: records.append(k - 1) return records def solve(N, V, Cs): if V <= N: return sum(Cs) if N == 1: return Cs[0] * V V -= N Ds = list(itertools.accumulate(Cs)) effs = select_most_efficient(Ds) min_cost = Cs[0] * V for idx in effs: cost = calc_cost(V, Cs, Ds, idx) if cost < min_cost: min_cost = cost return min_cost + sum(Cs) def calc_cost(V, Cs, Ds, idx): m, r = divmod(V, idx + 1) cost = Ds[idx] * m if r == 0: return cost dp_head = get_dp(r, r, Cs[:r]) if m == 0 or idx == len(Ds) - 1: return cost + dp_head[r] dp_tail = get_dp(r, m, Cs[idx + 1:]) return cost + min(a + b for a, b in zip(dp_head[::-1], dp_tail)) def get_dp(r, m, Cs): Ds = itertools.accumulate(Cs) dp = [0] + [float('inf')] * r for i, d in enumerate(Ds, 1): if i > m or i > r: break for j in range(i, min(r, m * i) + 1, i): dp[j] = min(dp[j], dp[j - i] + d) return dp N, V, Cs = read_data() print(solve(N, V, Cs))