#include using namespace std; using lint = long long int; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template void ndarray(vector &vec, int len) { vec.resize(len); } template void ndarray(vector &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template pair operator+(const pair &l, const pair &r) { return make_pair(l.first + r.first, l.second + r.second); } template pair operator-(const pair &l, const pair &r) { return make_pair(l.first - r.first, l.second - r.second); } template istream &operator>>(istream &is, vector &vec){ for (auto &v : vec) is >> v; return is; } template ostream &operator<<(ostream &os, const vector &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const deque &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const pair &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; } template ostream &operator<<(ostream &os, const map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; /* #include #include #include using namespace __gnu_pbds; // find_by_order(), order_of_key() template using pbds_set = tree, rb_tree_tag, tree_order_statistics_node_update>; template using pbds_map = tree, rb_tree_tag, tree_order_statistics_node_update>; */ template struct ModInt { using lint = long long; static int get_mod() { return mod; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&](){ std::set fac; int v = mod - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < mod; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val; constexpr ModInt() : val(0) {} constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; } constexpr ModInt(lint v) { _setval(v % mod + mod); } explicit operator bool() const { return val != 0; } constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); } constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); } constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); } constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); } constexpr ModInt operator-() const { return ModInt()._setval(mod - val); } constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; } constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; } constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; } constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); } friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); } friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); } friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); } constexpr bool operator==(const ModInt &x) const { return val == x.val; } constexpr bool operator!=(const ModInt &x) const { return val != x.val; } bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; } friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val; return os; } constexpr lint power(lint n) const { lint ans = 1, tmp = this->val; while (n) { if (n & 1) ans = ans * tmp % mod; tmp = tmp * tmp % mod; n /= 2; } return ans; } constexpr lint inv() const { return this->power(mod - 2); } constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); } constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; } inline ModInt fac() const { static std::vector facs; int l0 = facs.size(); if (l0 > this->val) return facs[this->val]; facs.resize(this->val + 1); for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i)); return facs[this->val]; } ModInt doublefac() const { lint k = (this->val + 1) / 2; if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac(); else return ModInt(k).fac() * ModInt(2).power(k); } ModInt nCr(const ModInt &r) const { if (this->val < r.val) return ModInt(0); return this->fac() / ((*this - r).fac() * r.fac()); } ModInt sqrt() const { if (val == 0) return 0; if (mod == 2) return val; if (power((mod - 1) / 2) != 1) return 0; ModInt b = 1; while (b.power((mod - 1) / 2) == 1) b += 1; int e = 0, m = mod - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = power((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.power(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.power(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val, mod - x.val)); } }; using mint = ModInt<1000000007>; // Sieve of Eratosthenes // (*this)[i] = (divisor of i, greater than 1) // Example: [0, 1, 2, 3, 2, 5, 3, 7, 2, 3, 2, 11, ...] // Complexity: Space O(MAXN), Time (construction) O(MAXNloglogMAXN) struct SieveOfEratosthenes : std::vector { std::vector primes; SieveOfEratosthenes(int MAXN) : std::vector(MAXN + 1) { std::iota(begin(), end(), 0); for (int i = 2; i <= MAXN; i++) { if ((*this)[i] == i) { primes.push_back(i); for (int j = i; j <= MAXN; j += i) (*this)[j] = i; } } } using T = long long int; // Prime factorization for x <= MAXN^2 // Complexity: O(log x) (x <= MAXN) // O(MAXN / logMAXN) (MAXN < x <= MAXN^2) std::map Factorize(T x) { assert(x <= 1LL * (int(size()) - 1) * (int(size()) - 1)); std::map ret; if (x < int(size())) { while (x > 1) { ret[(*this)[x]]++; x /= (*this)[x]; } } else { for (auto p : primes) { while (!(x % p)) x /= p, ret[p]++; if (x == 1) break; } if (x > 1) ret[x]++; } return ret; } std::vector Divisors(T x) { std::vector ret{1}; for (auto p : Factorize(x)) { int n = ret.size(); for (int i = 0; i < n; i++) { for (T a = 1, d = 1; d <= p.second; d++) { a *= p.first; ret.push_back(ret[i] * a); } } } return ret; // Not sorted } // Moebius function Table // return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...] std::vector GenerateMoebiusFunctionTable() { std::vector ret(size()); for (int i = 1; i < int(size()); i++) { if (i == 1) ret[i] = 1; else if ((i / (*this)[i]) % (*this)[i] == 0) ret[i] = 0; else ret[i] = -ret[i / (*this)[i]]; } return ret; } }; SieveOfEratosthenes sieve(1000000); int main() { int M; cin >> M; if (M == 1) { puts("1"); return 0; } auto facs = sieve.Factorize(M); int ord = 0; for (auto p : facs) ord = gcd(ord, p.second); mint nb_aut = 0; mint ret = 0; FOR(d, 1, 1 + 1) if (ord % d == 0) { mint p = 1; for (auto pa : facs) { REP(_, d) p *= pa.first; } int esum = ord / d; vector ppow(1000, 1); REP(i, ppow.size() - 1) ppow[i + 1] = ppow[i] * p; vector es, C, D; REP(S, 1 << (esum - 1)) { es.clear(); int last = -1; bool ok = true; REP(i, esum - 1) if ((S >> i) & 1) { es.emplace_back(i - last); if (es.size() > 1 and es[es.size() - 2] > es[es.size() - 1]) { ok = false; break; } last = i; } es.emplace_back(esum - 1 - last); if (es.size() > 1 and es[es.size() - 2] > es[es.size() - 1]) { ok = false; } if (!ok) continue; C = es, D = es; REP(i, es.size()) C[i] = D[i] = i + 1; REP(i, es.size() - 1) if (es[i] == es[i + 1]) chmin(C[i + 1], C[i]); IREP(i, es.size() - 1) if (es[i] == es[i + 1]) chmax(D[i], D[i + 1]); mint tmp = 1; int n = es.size(); REP(k, n) tmp *= (ppow[D[k]] - ppow[k]) * ppow[es[k] * (n - D[k])] * ppow[(es[k] - 1) * (n - C[k] + 1)]; nb_aut += tmp; ret += mint(M).fac() / tmp; } } cout << ret << '\n'; }