#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); (0..len).map(|_| read_value!($next, $t)).collect::>() }}; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } #[allow(unused)] macro_rules! debug { ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap()); } #[allow(unused)] macro_rules! debugln { ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap()); } /** * Sparse Table. * BiOp should be the type of a binary operator which is * associative, commutative and idempotent. * (For example, both min and gcd satisfy these properties.) * Verified by: AtCoder CODE FESTIVAL 2016 Tournament Round 3 (Parallel) B * (http://cf16-tournament-round3-open.contest.atcoder.jp/submissions/1026294) */ struct SparseTable { biop: BiOp, st: Vec>, } impl SparseTable where BiOp: Fn(T, T) -> T, T: Copy { pub fn new(ary: &[T], biop: BiOp) -> Self { let n = ary.len(); let mut h = 1; while 1 << h < n { h += 1; } let mut st: Vec> = vec![Vec::from(ary); h + 1]; for i in 0 .. n { st[0][i] = ary[i]; } for b in 1 .. (h + 1) { if n + 1 < 1 << b { break; } for i in 0 .. (n + 1 - (1 << b)) { let next_idx = (1 << (b - 1)) + i; st[b][i] = biop(st[b - 1][i], st[b - 1][next_idx]); } } SparseTable {biop: biop, st: st} } fn top_bit(t: usize) -> usize { let mut h = 0; while 1 << h <= t { h += 1; } h - 1 } pub fn query(&self, f: usize, s: usize) -> T { assert!(f <= s); let b = Self::top_bit(s + 1 - f); let endpoint = s + 1 - (1 << b); (self.biop)(self.st[b][f], self.st[b][endpoint]) } } fn gcd(mut x: i64, mut y: i64) -> i64 { while y != 0 { let r = x % y; x = y; y = r; } x } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts { ($($format:tt)*) => (let _ = write!(out,$($format)*);); } input! { n: usize, a: [i64; n], } let spt = SparseTable::new(&a, gcd); let mut tot: i64 = 0; for i in 0..n { let mut pass = n + 1; let mut fail = i; while pass - fail > 1 { let mid = (pass + fail) / 2; if spt.query(i, mid - 1) == 1 { pass = mid; } else { fail = mid; } } tot += (n + 1 - pass) as i64; } puts!("{}\n", tot); } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }