/* このコード、と~おれ! Be accepted! ∧_∧  (。・ω・。)つ━☆・*。 ⊂   ノ    ・゜+.  しーJ   °。+ *´¨)          .· ´¸.·*´¨) ¸.·*¨)           (¸.·´ (¸.·'* ☆ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*多倍長整数/cpp_intで宣言 #include using namespace boost::multiprecision; */ //#pragma gcc target ("avx2") //#pragma gcc optimization ("o3") //#pragma gcc optimization ("unroll-loops") #define rep(i, n) for(int i = 0; i < (n); ++i) #define rep1(i, n) for(int i = 1; i <= (n); ++i) #define rep2(i, n) for(int i = 2; i < (n); ++i) #define repr(i, n) for(int i = n; i >= 0; --i) #define reprm(i, n) for(int i = n - 1; i >= 0; --i) #define printynl(a) printf(a ? "yes\n" : "no\n") #define printyn(a) printf(a ? "Yes\n" : "No\n") #define printYN(a) printf(a ? "YES\n" : "NO\n") #define printim(a) printf(a ? "possible\n" : "imposible\n") #define printdb(a) printf("%.50lf\n", a) //少数出力 #define printLdb(a) printf("%.50Lf\n", a) //少数出力 #define printdbd(a) printf("%.16lf\n", a) //少数出力(桁少なめ) #define prints(s) printf("%s\n", s.c_str()) //string出力 #define all(x) (x).begin(), (x).end() #define allsum(a, b, c) ((a + b) * c / 2LL) //等差数列の和、初項,末項,項数 #define pb push_back #define rpriq priq, greater> #define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI) #define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L) #define Please return #define AC 0 #define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) /*(a, b) から (c, d) のマンハッタン距離 */ using ll = long long; constexpr int INF = 1073741823; constexpr int MINF = -1073741823; constexpr ll LINF = ll(4661686018427387903); constexpr ll MOD = 1000000007; const long double PI = acosl(-1.0L); using namespace std; void scans(string& str) { char c; str = ""; scanf("%c", &c); if (c == '\n')scanf("%c", &c); while (c != '\n' && c != -1 && c != ' ') { str += c; scanf("%c", &c); } } void scanc(char& str) { char c; scanf("%c", &c); if (c == -1)return; while (c == '\n') { scanf("%c", &c); } str = c; } double acot(double x) { return PI / 2 - atan(x); } ll LSB(ll n) { return (n & (-n)); } /*-----------------------------------------ここからコード-----------------------------------------*/ #define REP(i, n) rep(i, n) #define FOR(i, c) for(auto i=(c).begin();i!=(c).end();++i) #define ALL(c) all(c) typedef long double Weight; struct Edge { int src, dst; Weight weight; Edge(int src, int dst, Weight weight) : src(src), dst(dst), weight(weight) { } }; bool operator < (const Edge& e, const Edge& f) { return e.weight != f.weight ? e.weight > f.weight : // !!INVERSE!! e.src != f.src ? e.src < f.src : e.dst < f.dst; } typedef vector Edges; typedef vector Graph; typedef vector Array; typedef vector Matrix; Weight k_shortestPath(const Graph& g, int s, int t, int k) { const int n = g.size(); Graph h(n); // make reverse graph REP(u, n) FOR(e, g[u]) h[e->dst].push_back(Edge(e->dst, e->src, e->weight)); vector d(n, INF); d[t] = 0; // make potential vector p(n, -1); // using backward dijkstra priority_queue Q; Q.push(Edge(t, t, 0)); while (!Q.empty()) { Edge e = Q.top(); Q.pop(); if (p[e.dst] >= 0) continue; p[e.dst] = e.src; FOR(f, h[e.dst]) if (d[f->dst] > e.weight + f->weight) { d[f->dst] = e.weight + f->weight; Q.push(Edge(f->src, f->dst, e.weight + f->weight)); } } int l = 0; // forward dijkstra-like method priority_queue R; R.push(Edge(-1, s, 0)); while (!R.empty()) { Edge e = R.top(); R.pop(); if (e.dst == t && ++l == k) return e.weight + d[s]; FOR(f, g[e.dst]) R.push(Edge(f->src, f->dst, e.weight + f->weight - d[f->src] + d[f->dst])); } return -1; // not found } int main() { int n, m, k, x, y; scanf("%d%d%d%d%d", &n, &m, &k, &x, &y); --x; --y; Graph graph(n); vector> xy(n); int p, q; rep(i, n) { scanf("%d%d", &p, &q); xy[i] = { p, q }; } rep(i, m) { scanf("%d%d", &p, &q); --p; --q; long double a = xy[p].first, b = xy[p].second, c = xy[q].first, d = xy[q].second, cost; cost = sqrt((c - a) * (c - a) + (d - b) * (d - b)); graph[p].push_back({ p, q, cost }); graph[q].push_back({ q, p, cost }); } rep(i, k)printLdb(k_shortestPath(graph, x, y, i + 1)); Please AC; }