#include #include #include #include #include #include #include #include #include #include using namespace std; #define rep(i, n) for (int64_t i = 0; i < (n); i++) #define irep(i, n) for (int64_t i = 0; i <= (n); i++) #define rrep(i, n) for (int64_t i = (n)-1; i >= 0; i--) #define rirep(i, n) for (int64_t i = n; i >= 0; i--) struct Edge { int from; int to; int64_t capacity; int64_t flow; }; void maxflow(const vector> &outEdge, const vector> &inEdge, vector &edgeData, const int source, const int sink) { const int n = outEdge.size(); const int m = edgeData.size(); while (true) { // check if reachable to sink vector parent(n, -1); queue q; q.push(source); while (!q.empty()) { int v = q.front(); q.pop(); for (const int e : outEdge[v]) { const Edge &data = edgeData[e]; const int nv = data.to; if (parent[nv] < 0 && data.capacity - data.flow > 0) { q.push(nv); parent[nv] = e; } } for (const int e : inEdge[v]) { const Edge &data = edgeData[e]; const int nv = data.from; if (parent[nv] < 0 && data.flow > 0) { q.push(nv); parent[nv] = e; } } } if (parent[sink] < 0) { break; } // select path from source to sink int64_t d = 1'000'000'000; int v = sink; while (v != source) { const int e = parent[v]; const Edge &data = edgeData[e]; if (data.to == v) { d = min(d, data.capacity - data.flow); v = data.from; } else { d = min(d, data.flow); v = data.to; } } // update flow on the path v = sink; while (v != source) { const int e = parent[v]; Edge &data = edgeData[e]; if (data.to == v) { data.flow += d; v = data.from; } else { data.flow -= d; v = data.to; } } } } int main() { int N, M, d; cin >> N >> M >> d; using Plane = tuple; const int TMAX = 1'000'000'000; const int64_t INF = 1'000L * 1'000'000'000; vector planes(M); vector> departures(N); rep(i, M) { int u, v, p, q, w; cin >> u >> v >> p >> q >> w; u--; v--; planes[i] = Plane(u, v, p, q + d, w); departures[u].push_back(p); } departures[0].push_back(0); departures[N - 1].push_back(TMAX + d); rep(i, N) { sort(departures[i].begin(), departures[i].end()); departures[i].erase(unique(departures[i].begin(), departures[i].end()), departures[i].end()); } int nodeNum = 0; vector> ids(N); rep(i, N) { for (const int d : departures[i]) { ids[i].push_back(nodeNum); nodeNum++; } } vector> outEdge(nodeNum), inEdge(nodeNum); vector edgeData; int edgeNum = 0; // edges representing moving by plane rep(i, M) { int u, v, p, q, w; tie(u, v, p, q, w) = planes[i]; auto fromAddr = lower_bound(departures[u].begin(), departures[u].end(), p); auto toAddr = lower_bound(departures[v].begin(), departures[v].end(), q); if (toAddr != departures[v].end()) { int fromId = ids[u][fromAddr - departures[u].begin()]; int toId = ids[v].at(toAddr - departures[v].begin()); outEdge[fromId].push_back(edgeNum); inEdge[toId].push_back(edgeNum); Edge eData; eData.from = fromId; eData.to = toId; eData.flow = 0; eData.capacity = w; edgeData.push_back(eData); edgeNum++; } } cerr << "------------------------------" << endl; for (const Edge &data : edgeData) { cerr << data.from << " " << data.to << "\t" << data.flow << " / " << data.capacity << endl; } cerr << "------------------------------" << endl; // edges representing staying in a city rep(i, N) { const int tNum = departures[i].size(); rep(j, tNum - 1) { int fromId = ids[i][j]; int toId = ids[i][j + 1]; outEdge[fromId].push_back(edgeNum); inEdge[toId].push_back(edgeNum); Edge eData; eData.from = fromId; eData.to = toId; eData.flow = 0; eData.capacity = INF; edgeData.push_back(eData); edgeNum++; } } const int source = 0; const int sink = nodeNum - 1; maxflow(outEdge, inEdge, edgeData, source, sink); int64_t result = 0; for (const int e : inEdge[sink]) { result += edgeData[e].flow; } cout << result << endl; return 0; }