//nyan氏のコード(epsf001-ex) https://www.hackerrank.com/contests/epsf001/challenges/epsf001-ex/submissions/code/1317785205 #include #define whlie while #define pb push_back #define eb emplace_back #define fi first #define se second #define rep(i,N) for(int i = 0; i < (N); i++) #define repr(i,N) for(int i = (N) - 1; i >= 0; i--) #define rep1(i,N) for(int i = 1; i <= (N) ; i++) #define repr1(i,N) for(int i = (N) ; i > 0 ; i--) #define each(x,v) for(auto& x : v) #define all(v) (v).begin(),(v).end() #define sz(v) ((int)(v).size()) #define ini(...) int __VA_ARGS__; in(__VA_ARGS__) #define inl(...) ll __VA_ARGS__; in(__VA_ARGS__) #define ins(...) string __VA_ARGS__; in(__VA_ARGS__) using namespace std; void solve(); using ll = long long; using vl = vector; using vi = vector; using vvi = vector< vector >; constexpr int inf = 1001001001; constexpr ll infLL = (1LL << 61) - 1; struct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya; template inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template ostream& operator <<(ostream& os, const pair &p) { os << p.first << " " << p.second; return os; } template istream& operator >>(istream& is, pair &p) { is >> p.first >> p.second; return is; } template ostream& operator <<(ostream& os, const vector &v) { int s = (int)v.size(); rep(i,s) os << (i ? " " : "") << v[i]; return os; } template istream& operator >>(istream& is, vector &v) { for(auto &x : v) is >> x; return is; } void in(){} template void in(T &t,U &...u){ cin >> t; in(u...);} void out(){cout << "\n";} template void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << " "; out(u...);} templatevoid die(T x){out(x); exit(0);} #ifdef NyaanDebug #include "NyaanDebug.h" #define trc(...) do { cerr << #__VA_ARGS__ << " = "; dbg_out(__VA_ARGS__);} while(0) #define trca(v,N) do { cerr << #v << " = "; array_out(v , N);cout << endl;} while(0) #else #define trc(...) #define trca(...) int main(){solve();} #endif //using P = pair; using vp = vector

; constexpr int MOD = /** 1000000007; //*/ 998244353; //////////////// vector fac,finv,inv; void COMinit(int MAX) { MAX++; fac.resize(MAX , 0); finv.resize(MAX , 0); inv.resize(MAX , 0); fac[0] = fac[1] = finv[0] = finv[1] = inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // nCk combination inline long long COM(int n,int k){ if(n < k || k < 0 || n < 0) return 0; else return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } // nPk permutation inline long long PER(int n,int k){ if (n < k || k < 0 || n < 0) return 0; else return (fac[n] * finv[n - k]) % MOD; } // nHk homogeneous polynomial inline long long HGP(int n,int k){ if(n == 0 && k == 0) return 1; // else if(n < 1 || k < 0) return 0; else return fac[n + k - 1] * (finv[k] * finv[n - 1] % MOD) % MOD; } template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< MOD >; template< int mod > struct NumberTheoreticTransform { int base, max_base, root; vector< int > rev, rts; NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} { assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(mod_pow(root, (mod - 1) >> 1) == 1) ++root; assert(mod_pow(root, mod - 1) == 1); root = mod_pow(root, (mod - 1) >> max_base); } inline int mod_pow(int x, int n) { int ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x); x = mul(x, x); n >>= 1; } return ret; } inline int inverse(int x) { return mod_pow(x, mod - 2); } inline unsigned add(unsigned x, unsigned y) { x += y; if(x >= mod) x -= mod; return x; } inline unsigned mul(unsigned a, unsigned b) { return 1ull * a * b % (unsigned long long) mod; } void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while(base < nbase) { int z = mod_pow(root, 1 << (max_base - 1 - base)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = mul(rts[i], z); } ++base; } } void ntt(vector< int > &a) { const int n = (int) a.size(); assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { int z = mul(a[i + j + k], rts[j + k]); a[i + j + k] = add(a[i + j], mod - z); a[i + j] = add(a[i + j], z); } } } } vector< int > multiply(vector< int > a, vector< int > b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); int inv_sz = inverse(sz); for(int i = 0; i < sz; i++) { a[i] = mul(a[i], mul(b[i], inv_sz)); } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } }; void solve(){ inl(N); // bicom init COMinit(N + 100); NumberTheoreticTransform ntt; modint nya = 0; for(int i = 0 ; i <= N ; i++){ if(i & 1) nya -= finv[i]; else nya += finv[i]; } nya *= fac[N]; vi a({1 , 4 , 2}); { ll M = N / 2; vi cur({1}); while(M){ if(M & 1) cur = ntt.multiply(cur , a); a = ntt.multiply(a , a); M >>= 1; } a.swap(cur); } if(N & 1) a = ntt.multiply(a , vi({1 , 1})); modint nyaa = 0; for(int i = 0 ; i < (int)a.size(); i++){ nyaa += a[i] * ( (i & 1) ? MOD - fac[N - i] : fac[N - i]); } //trc(a); //trc(nya , nyaa); out( modint(fac[N]) - nya * 2 + nyaa ); }