#pragma GCC target ("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using ll = long long; using ld = long double; #define int long long #define all(a) (a).begin(),(a).end() #define fs first #define sc second #define xx first #define yy second.first #define zz second.second #define H pair #define P pair> #define Q(i,j,k) mkp(i,mkp(j,k)) #define rng(i,s,n) for(int i = (s) ; i < (n) ; i++) #define rep(i,n) rng(i, 0, (n)) #define mkp make_pair #define vec vector #define pb emplace_back #define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end()) #define getidx(b,i) lower_bound(all(b),(i))-b.begin() #define ssp(i,n) (i==(int)(n)-1?"\n":" ") #define ctoi(c) (int)(c-'0') #define itoc(c) (char)(c+'0') #define pp(x,y) pb(H{x,y}) #define ppp(x,y,z) pb(Q(x,y,z)) #define cyes printf("Yes\n") #define cno printf("No\n") #define cdf(n) int quetimes_=(n);rep(qq123_,quetimes_) #define gcj printf("Case #%lld: ",qq123_+1) #define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read() //#define endl "\n" constexpr int mod = 1e9 + 7; constexpr int Mod = 998244353; constexpr int MXN = 500000 + 100; constexpr ld EPS = 1e-10; constexpr ll inf = 3 * 1e18; constexpr int Inf = 15 * 1e8; const vecdx{ -1,1,0,0 }, dy{ 0,0,-1,1 }; templatebool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } templatebool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } ll read() { ll u, k = scanf("%lld", &u); return u; } string reads() { string s; cin >> s; return s; } H readh(bool g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g) u.fs--, u.sc--; return u; } bool inarea(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; } ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; } ll mod_pow(ll x, ll n, ll p = mod) { ll res = 1; x %= p; while (n > 0) { if (n & 1) res = res * x % p; x = x * x % p; n >>= 1; } return res; }//x^n%p ll bitcount(ll x) { int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++; return sum; } constexpr int fn_ = 1000005; ll fact_[fn_], comp_[fn_]; ll comb(ll x, ll y, ll Mod = mod) { if (!fact_[0]) { fact_[0] = 1; comp_[0] = 1; for (int i = 1; i < fn_; i++) fact_[i] = fact_[i - 1] * i % Mod; comp_[fn_ - 1] = mod_pow(fact_[fn_ - 1], Mod - 2, Mod); for (int i = fn_ - 2; i > 0; i--) comp_[i] = comp_[i + 1] * (i + 1) % Mod; } if (x < y) return 0; return fact_[x] * comp_[x - y] % Mod * comp_[y] % Mod; } //-------------------------------------------------------------- class Matrix { public: int h, w; int dat[100][100]; void init(int height, int width) { h = height, w = width; for (int i = 0; i < h; i++)for (int j = 0; j < w; j++) dat[i][j] = 0; } auto operator[](int i) { return dat[i]; } void operator+=(Matrix& b) { for (int i = 0; i < h; i++)for (int j = 0; j < w; j++) dat[i][j] += b.dat[i][j]; } void operator-=(Matrix& b) { for (int i = 0; i < h; i++)for (int j = 0; j < w; j++) dat[i][j] -= b.dat[i][j]; } Matrix operator+(Matrix& b) { Matrix c = *this;c += b; return c; } Matrix operator-(Matrix& b) { Matrix c = *this; c -= b; return c; } Matrix operator*(Matrix& b) { Matrix c; c.init(h, b.w); for (int i = 0; i < h; i++)for (int j = 0; j < w; j++)for (int k = 0; k < b.w; k++) { c.dat[i][k] += dat[i][j] * b.dat[j][k]; } return c; } void operator%=(int& b) { for (int i = 0; i < h; i++)for (int j = 0; j < w; j++) dat[i][j] %= b; } Matrix operator%(int& b) { Matrix c = *this; c %= b; return c; } void operator*=(int& b) { for (int i = 0; i < h; i++)for (int j = 0; j < w; j++) dat[i][j] *= b; } Matrix operator*(int& b) { Matrix c = *this; c *= b; return c; } Matrix moddot(Matrix& a, Matrix& b, int Mod = mod) { Matrix c; c.init(a.h, b.w); for (int i = 0; i < a.h; i++)for (int j = 0; j < a.w; j++)for (int k = 0; k < b.w; k++) { (c.dat[i][k] += a.dat[i][j] * b.dat[j][k]) %= Mod; } return c; } Matrix mod_pow(int k, int Mod = mod) { Matrix c, d = *this; c.init(h, w); for (int i = 0; i < h; i++) c[i][i] = 1; while (k) { if (k & 1) { c = moddot(c, d); c %= Mod; } d = moddot(d, d); d %= Mod; k >>= 1; } return c; } }; Matrix a, b, c, d; signed main() { int m, k; cin >> m >> k; a.init(m, 1); a[0][0] = 1; b.init(m, m); rep(i, m)rep(j, m) { b[i][i * j % m]++; b[i][(i + j) % m]++; } b = b.mod_pow(k, mod); cout << b[0][0] << endl; }