// #pragma GCC optimize("unroll-loops", "omit-frame-pointer", "inline") // #pragma GCC option("arch=native", "tune=native", "no-zero-upper") // #pragma GCC // target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native") // #pragma GCC optimize("Ofast") // #pragma GCC optimize("tree-vectorize","openmp","predictive-commoning") // #pragma GCC option("D_GLIBCXX_PARALLEL","openmp") #include using namespace std; typedef long long ll; typedef pair P; typedef vector vi; typedef vector vll; // #define int long long #define pb push_back #define mp make_pair #define eps 1e-9 #define INF 2000000000 // 2e9 #define LLINF 2000000000000000000ll // 2e18 (llmax:9e18) #define fi first #define sec second #define all(x) (x).begin(), (x).end() #define sq(x) ((x) * (x)) #define dmp(x) cerr << #x << ": " << x << endl; template void chmin(T &a, const T &b) { if (a > b) a = b; } template void chmax(T &a, const T &b) { if (a < b) a = b; } template using MaxHeap = priority_queue; template using MinHeap = priority_queue, greater>; template vector vect(int len, T elem) { return vector(len, elem); } template ostream &operator<<(ostream &os, const pair &p) { os << p.fi << ',' << p.sec; return os; } template istream &operator>>(istream &is, pair &p) { is >> p.fi >> p.sec; return is; } template ostream &operator<<(ostream &os, const vector &vec) { for (int i = 0; i < vec.size(); i++) { os << vec[i]; if (i + 1 < vec.size()) os << ' '; } return os; } template istream &operator>>(istream &is, vector &vec) { for (int i = 0; i < vec.size(); i++) is >> vec[i]; return is; } void fastio() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); } template // if inv is needed, this shold be prime. struct ModInt { ll val; ModInt() : val(0ll) {} ModInt(const ll &v) : val(((v % MOD) + MOD) % MOD) {} bool operator==(const ModInt &x) const { return val == x.val; } bool operator!=(const ModInt &x) const { return !(*this == x); } bool operator<(const ModInt &x) const { return val < x.val; } bool operator>(const ModInt &x) const { return val > x.val; } bool operator>=(const ModInt &x) const { return !(*this < x); } bool operator<=(const ModInt &x) const { return !(*this > x); } ModInt operator-() const { return ModInt(MOD - val); } ModInt inv() const { return this->pow(MOD - 2); } ModInt &operator+=(const ModInt &x) { if ((val += x.val) >= MOD) val -= MOD; return *this; } ModInt &operator-=(const ModInt &x) { if ((val += MOD - x.val) >= MOD) val -= MOD; return *this; } ModInt &operator*=(const ModInt &x) { (val *= x.val) %= MOD; return *this; } ModInt &operator/=(const ModInt &x) { return *this *= x.inv(); }; ModInt operator+(const ModInt &x) const { return ModInt(*this) += x; } ModInt operator-(const ModInt &x) const { return ModInt(*this) -= x; } ModInt operator*(const ModInt &x) const { return ModInt(*this) *= x; } ModInt operator/(const ModInt &x) const { return ModInt(*this) /= x; } friend istream &operator>>(istream &i, ModInt &x) { ll v; i >> v; x = v; return i; } friend ostream &operator<<(ostream &o, const ModInt &x) { o << x.val; return o; } ModInt pow(ll x) const { auto res = ModInt(1ll); auto b = *this; while (x) { if (x & 1) res *= b; x >>= 1; b *= b; } return res; } }; template ModInt pow(ModInt a, ll x) { ModInt res = ModInt(1ll); while (x) { if (x & 1) res *= a; x >>= 1; a *= a; } return res; } // constexpr int MOD = 1e9 + 7; constexpr int MOD = 998244353; using mint = ModInt; vector inv, fac, facinv; // notice: 0C0 = 1 ModInt nCr(int n, int r) { assert(!(n < r)); assert(!(n < 0 || r < 0)); return fac[n] * facinv[r] * facinv[n - r]; } void init(int SIZE) { fac.resize(SIZE + 1); inv.resize(SIZE + 1); facinv.resize(SIZE + 1); fac[0] = inv[1] = facinv[0] = mint(1ll); for (int i = 1; i <= SIZE; i++) fac[i] = fac[i - 1] * mint(i); for (int i = 2; i <= SIZE; i++) inv[i] = mint(0ll) - mint(MOD / i) * inv[MOD % i]; for (int i = 1; i <= SIZE; i++) facinv[i] = facinv[i - 1] * inv[i]; return; } template class NTT { public: static ll power_mod(ll x, ll a, ll mod) { ll res = 1ll; while (a > 0ll) { if (a & 1) res = (res * x) % mod; x = (x * x) % mod; a >>= 1; } return res; } static ll get_MOD() { return MOD; } static vector dft(vector f, int n, int sgn = 1) { if (n == 1) return f; vector f0, f1; for (int i = 0; i < n / 2; i++) { f0.pb(f[i * 2]); f1.pb(f[i * 2 + 1]); } f0 = dft(f0, n / 2, sgn); f1 = dft(f1, n / 2, sgn); ll zeta = power_mod(primitive, (MOD - 1ll) / (ll)n, MOD); if (sgn == -1) zeta = power_mod(zeta, MOD - 2, MOD); ll pow_zeta = 1ll; for (int i = 0; i < n; i++) { f[i] = (f0[i % (n / 2)] + pow_zeta * f1[i % (n / 2)]) % MOD; pow_zeta = (pow_zeta * zeta) % MOD; } return f; } static vector idft(vector f, int n) { f = dft(f, n, -1); ll ninv = power_mod(n, MOD - 2, MOD); for (int i = 0; i < f.size(); i++) { f[i] = (f[i] * ninv) % MOD; } return f; } static vector mult(vector A, vector B) { int n = 1; while (n < A.size() + B.size() + 1) n <<= 1; A.resize(n, 0); B.resize(n, 0); A = dft(A, n); B = dft(B, n); vector C; for (int i = 0; i < n; i++) C.pb((A[i] * B[i]) % MOD); return idft(C, n); } }; using ntt = NTT<998244353ll, 3ll>; #define endl "\n" void solve() { int N, A1, A2; cin >> N >> A1 >> A2; if (A1 > A2) swap(A1, A2); int A = A1; int B = A2 - A; int C = N - A2; mint ans; for (int i = 0; i < A; i++) { ans += mint(A) * fac[N - 1]; } for (int i = 0; i < B; i++) { ans += mint(B) * fac[N - 1]; } for (int i = 0; i < C; i++) { ans += mint(C) * fac[N - 1]; } vector f(A), g(C); for (int i = 0; i < A; i++) f[i] = nCr(A - 1, i).val; for (int i = 0; i < C; i++) g[i] = nCr(C - 1, i).val; auto _h = ntt::mult(f, g); vector h(A + C); for (int i = 0; i < h.size(); i++) { if (N - 2 - i < 0) continue; h[i] = mint(_h[i]); h[i] *= fac[i] * fac[N - 2 - i]; ans += h[i] * mint(2ll) * mint(A) * mint(C); } cout << ans << endl; return; } signed main() { fastio(); init(200100); solve(); // int t; // cin >> t; // while (t--) solve(); // int t; cin >> t; // for(int i=1;i<=t;i++){ // cout << "Case #" << i << ": "; // solve(); // } return 0; }