#include #define REP(i, n) for(int i = 0; (i) < (n); (i)++) using namespace std; long modpow(long a, long n, long mod) { long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } // a^{-1} mod を計算する long modinv(long a, long mod) { return modpow(a, mod - 2, mod); } struct compare1 { bool operator()(const pair& value, const long& key) { return (value.first < key); } bool operator()(const long& key, const pair& value) { return (key < value.first); } }; struct RMQ { vector a; int inf = 2000000000; // 2*10^9 int n = 1; RMQ(int n_ = 1){ init(n_); } void init(int n_ = 1){ while(n < n_) n *= 2; a.resize(2*n-1); REP(i, 2*n-1) a[i] = inf; } //k番目の値(0-indexed)をbに変更 void update(int k, int b){ k += n-1; a[k] = b; while(k > 0){ k = (k-1)/2; a[k] = min(a[2*k+1], a[2*k+2]); } } //[c,b)の最小値を返す際に呼ぶ関数 int query_first(int c, int b){ return query(c, b, 0, 0, n); } //k : 節点番号, l, rはその接点が[l, r)に対応することを示す int query(int c, int b, int k, int l, int r){ if(r <= c || b <= l) return inf; if(c <= l && r <= b) return a[k]; else{ int vl = query(c, b, k*2+1, l, (l+r)/2); int vr = query(c, b, k*2+2, (l+r)/2, r); return min(vl, vr); } } }; struct UnionFind { vector par; vector rank; UnionFind(int n = 1){ init(n); } void init(int n = 1){ par.resize(n); rank.resize(n); REP(i, n) par[i] = i, rank[i] = 0; } int root(int x){ if(par[x] == x) return x; else return par[x] = root(par[x]); } bool issame(int x, int y){ return root(x) == root(y); } bool merge(int x, int y){ x = root(x); y = root(y); if(x == y) return false; if(rank[x] < rank[y]) swap(x, y); if(rank[x] == rank[y]) rank[x]++; par[y] = x; return true; } }; template struct weightedUnionFind{ vector par; vector rank; vector diff_weight; weightedUnionFind(int n = 1, Abel SUM_UNITY = 0){ init(n, SUM_UNITY); } void init(int n = 1, Abel SUM_UNITY = 0){ par.resize(n); rank.resize(n); diff_weight.resize(n); REP(i, n) par[i] = i, rank[i] = 0, diff_weight[i] = SUM_UNITY; } int root(int x){ if(par[x] == x) return x; else{ int r = root(par[x]); diff_weight[x] += diff_weight[par[x]]; return par[x] = r; } } Abel weight(int x){ root(x); return diff_weight[x]; } bool issame(int x, int y){ return root(x) == root(y); } bool merge(int x, int y, Abel w){ w += weight(x); w -= weight(y); x = root(x); y = root(y); if(x == y) return false; if(rank[x] < rank[y]) swap(x, y), w = -w; if(rank[x] == rank[y]) rank[x]++; par[y] = x; diff_weight[y] = w; return true; } Abel diff(int x, int y){ return weight(y) - weight(x); } }; /* void dijkstra(int s, int V, Graph &G, long* d){ priority_queue, greater

> pque; fill(d, d + V, INF); d[s] = 0; pque.push(P(0, s)); while(!pque.empty()){ P p = pque.top(); pque.pop(); int now = p.second; if(d[now] < p.first) continue; REP(i, G[now].size()){ Edge e = G[now][i]; if(d[e.to] > d[now] + e.weight){ d[e.to] = d[now] + e.weight; pque.push(P(d[e.to], e.to)); } } } } */ int GCD(int a, int b){ if(b == 0) return a; if(a < b) return GCD(b, a); else return GCD(b, a%b); } struct BIT{ vector dat; int n = 1; BIT(int nn = 1){ init(nn); } void init(int nn = 1){ while(n < nn) n *= 2; dat.resize(n+1); REP(i, n+1) dat[i] = 0l; } //1-indexed!!!! //index iにx加える void add(int i, long x){ while(i <= n){ dat[i] += x; i += (i&(-i)); } } //1-indexed!!!!! //index 1-iまでの和を求める long get_sum(int i){ long ans = 0l; while(i > 0){ ans += dat[i]; i -= (i & (-i)); } return ans; } }; //{0, 1, 2, ..., n-1}までの中からk個の要素を持つ部分集合についての処理を行う int next_combination(int sub){ int x = sub & -sub, y = sub + x; return (((sub & ~y) / x) >> 1) | y; } //main関数内で //bit = (1<(bit)でbitを8桁の2進数で表示できる //BellmanFord struct Edge{ int from, to; long cost; Edge(int f, int t, long c){ from = f; to = t; cost = c; } }; struct BellmanFord{ vector es; vector d; int E, V; // E 辺 V 頂点 long inf = 1000000000000000000; BellmanFord(int ee=1, int vv=1){ E = ee; V = vv; d.resize(vv); } void update(int from, int to, long cost){ es.push_back(Edge(from, to, cost)); } void shortest_path(int start){ REP(i, V) d[i] = inf; d[start] = 0l; while(true){ bool upd = false; REP(i, E){ Edge e = es[i]; if(d[e.from] != inf && d[e.to] > d[e.from] + e.cost){ d[e.to] = d[e.from] + e.cost; upd = true; } } if(!upd) break; } cout << -d[V-1] << endl; } //true : there is a negative loop. //false : there is NOT a negative loop. bool find_negative_loop(){ REP(i, V) d[i] = 0l; REP(i, V){ REP(j, E){ Edge e = es[j]; if(d[e.to] > d[e.from] + e.cost){ d[e.to] = d[e.from] + e.cost; if(i==V-1) return true; } } } return false; } //true : there is a negative loop including start. //false : there is NOT a negative loop including start. bool find_negative_loop_from_start(int start){ REP(i, V) d[i] = inf; d[start] = 0l; int itr = 0; bool ok = false; while(true){ bool upd = false; REP(i, E){ Edge e = es[i]; if(d[e.from] != inf && d[e.to] > d[e.from] + e.cost){ d[e.to] = d[e.from] + e.cost; upd = true; if(itr > V && e.to == V-1) ok = true; } } if(!upd) break; itr++; if(itr == 100*V) break; } if(itr == 100*V && ok){ return true; }else return false; } }; int main() { int N; cin >> N; int A[100005]; REP(i, N) cin >> A[i]; bool numcheck[100005], masucheck[100005]; REP(i, N) numcheck[i] = false, masucheck[i] = false; bool ok = true; bool div = false; REP(i, N){ if(i==0 && A[0] == A[N-1]){ numcheck[A[0]] = true; masucheck[0] = true; masucheck[N-1] = true; int left = 0; int right = N-1; while(A[left] == A[left+1] && !masucheck[left+1] && left + 1 < N-1){ masucheck[left+1] = true; left++; } while(A[right] == A[right-1] && !masucheck[right-1] && right-1 > 0){ masucheck[right-1] = true; right--; } div = true; }else{ if(numcheck[A[i]] && !masucheck[i]){ ok = false; break; } if(masucheck[i]) continue; numcheck[A[i]] = true; masucheck[i] = true; int right = i; while(A[right] == A[right+1] && right+1<=N-1 && !masucheck[right+1]){ masucheck[right+1] = true; right++; } } } if(ok){ if(div) cout << 1 << endl; else cout << 0 << endl; }else cout << -1 << endl; return 0; }