#include #ifdef DEBUG #include #else #define dump(...) #endif template class Edge{ public: int from,to; Cost cost; Edge() {} Edge(int to, Cost cost): to(to), cost(cost){} Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){} }; template using Graph = std::vector>>; template using Tree = std::vector>>; template void add_edge(C &g, int from, int to, T w = 1){ g[from].emplace_back(from, to, w); } template void add_undirected(C &g, int a, int b, T w = 1){ add_edge(g, a, b, w); add_edge(g, b, a, w); } class UnionFind{ std::vector parent, depth, size; int count; public: UnionFind(int n): parent(n), depth(n,1), size(n,1), count(n){ std::iota(parent.begin(), parent.end(), 0); } inline int get_root(int i){ if(parent[i] == i) return i; else return parent[i] = get_root(parent[i]); } inline bool is_same(int i, int j){return get_root(i) == get_root(j);} inline int merge(int i, int j){ int ri = get_root(i), rj = get_root(j); if(ri == rj) return ri; else{ --count; if(depth[ri] < depth[rj]){ parent[ri] = rj; size[rj] += size[ri]; return rj; }else{ parent[rj] = ri; size[ri] += size[rj]; if(depth[ri] == depth[rj]) ++depth[ri]; return ri; } } } inline int get_size(int i){return size[get_root(i)];} inline int count_group(){return count;} }; template class LCA{ private: std::vector> parent; int n, log2n; void dfs(const Tree &tree, int cur, int par, int d){ parent[cur][0] = par; depth[cur] = d; for(auto &e : tree[cur]){ if(e.to != par){ dist[e.to] = dist[cur] + e.cost; dfs(tree, e.to, cur, d+1); } } } public: std::vector depth; std::vector dist; LCA(){} LCA(const Tree &tree, int root): n(tree.size()), depth(n), dist(n) { log2n = (int)ceil(log(n) / log(2)) + 1; parent = std::vector>(n, std::vector(log2n, 0)); dfs(tree, root, -1, 0); for(int k = 0; k < log2n-1; ++k){ for(int v = 0; v < n; ++v){ if(parent[v][k] == -1) parent[v][k+1] = -1; else parent[v][k+1] = parent[parent[v][k]][k]; } } } int query(int a, int b){ if(depth[a] >= depth[b]) std::swap(a,b); for(int k = 0; k < log2n; ++k) if((depth[b] - depth[a]) >> k & 1) b = parent[b][k]; if(a == b) return a; for(int k = log2n-1; k >= 0; --k) if(parent[a][k] != parent[b][k]){a = parent[a][k]; b = parent[b][k];} return parent[a][0]; } T distance(int a, int b){ return dist[a] + dist[b] - 2 * dist[query(a,b)]; } }; template struct FixPoint : F{ explicit constexpr FixPoint(F &&f) noexcept : F(std::forward(f)){} template constexpr decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, std::forward(args)...); } }; template static inline constexpr decltype(auto) make_fix_point(F &&f){ return FixPoint(std::forward(f)); } template struct Forest{ std::vector> trees; std::vector tree_id; std::vector vertex_id; std::vector> rid; Forest(const Graph &g){ const int N = g.size(); UnionFind uf(N); for(auto &v : g){ for(auto &e : v){ uf.merge(e.from, e.to); } } const int tree_num = uf.count_group(); trees.resize(tree_num); tree_id.resize(N); vertex_id.resize(N); rid.resize(tree_num); std::vector temp; for(int i = 0; i < N; ++i) temp.push_back(uf.get_root(i)); std::sort(temp.begin(), temp.end()); temp.erase(std::unique(temp.begin(), temp.end()), temp.end()); for(int i = 0; i < N; ++i){ tree_id[i] = std::lower_bound(temp.begin(), temp.end(), uf.get_root(i)) - temp.begin(); vertex_id[i] = rid[tree_id[i]].size(); rid[tree_id[i]].push_back(i); } for(int i = 0; i < tree_num; ++i){ trees[i].resize(uf.get_size(temp[i])); } for(auto &v : g){ for(auto &e : v){ add_edge(trees[tree_id[e.from]], vertex_id[e.from], vertex_id[e.to], e.cost); } } } std::pair forests_id(int i) const { return std::make_pair(tree_id[i], vertex_id[i]); } int original_id(int i, int j) const { return rid[i][j]; } bool in_same_tree(int i, int j) const { return tree_id[i] == tree_id[j]; } int get_tree_num() const { return trees.size(); } }; template struct Rerooting{ int N; T tree; U id; Merge merge; EdgeF f; VertexF g; std::vector> dp; std::vector result; Rerooting(T tree, U id, Merge merge, EdgeF f, VertexF g): N(tree.size()), tree(tree), id(id), merge(merge), f(f), g(g), dp(N), result(N, id) { for(int i = 0; i < N; ++i) dp[i].assign((int)tree[i].size(), id); rec1(0); rec2(0, -1, id); for(int i = 0; i < N; ++i){ for(int j = 0; j < (int)tree[i].size(); ++j){ result[i] = merge(result[i], f(dp[i][j], tree[i][j])); } result[i] = g(result[i], i); } } U rec1(int cur, int par = -1){ U acc = id; for(int i = 0; i < (int)tree[cur].size(); ++i){ auto &e = tree[cur][i]; if(e.to == par) continue; dp[cur][i] = rec1(e.to, cur); acc = merge(acc, f(dp[cur][i], e)); } return g(acc, cur); } void rec2(int cur, int par, U value){ const int l = tree[cur].size(); for(int i = 0; i < l; ++i){ if(tree[cur][i].to == par){ dp[cur][i] = value; } } std::vector left(l+1, id), right(l+1, id); for(int i = 0; i < l-1; ++i){ const auto &e = tree[cur][i]; left[i+1] = merge(left[i], f(dp[cur][i], e)); } for(int i = l-1; i >= 1; --i){ const auto &e = tree[cur][i]; right[i-1] = merge(right[i], f(dp[cur][i], e)); } for(int i = 0; i < l; ++i){ const auto &e = tree[cur][i]; if(e.to == par) continue; rec2(e.to, cur, g(merge(left[i], right[i]), cur)); } } }; template auto make_rerooting(const G &tree, T id, Merge merge, EdgeF f, VertexF g){ return Rerooting(tree, id, merge, f, g); } int main(){ int N,M,Q; while(std::cin >> N >> M >> Q){ Graph g(N); for(int i = 0; i < M; ++i){ int u, v; std::cin >> u >> v; --u, --v; add_undirected(g, u, v, 1LL); } int64_t ans = 0; Forest forest(g); const int tree_num = forest.get_tree_num(); std::vector> lcas(tree_num); for(int i = 0; i < tree_num; ++i){ lcas[i] = LCA(forest.trees[i], 0); } std::vector> plans(tree_num); for(int i = 0; i < tree_num; ++i){ plans[i] = std::vector(forest.trees[i].size()); } for(int i = 0; i < Q; ++i){ int a,b; std::cin >> a >> b; --a, --b; if(forest.in_same_tree(a, b)){ ans += lcas[forest.tree_id[a]].distance(forest.vertex_id[a], forest.vertex_id[b]); }else{ plans[forest.tree_id[a]][forest.vertex_id[a]] += 1; plans[forest.tree_id[b]][forest.vertex_id[b]] += 1; } } for(int i = 0; i < tree_num; ++i){ const auto &tree = forest.trees[i]; const auto &plan = plans[i]; auto res = make_rerooting>( tree, std::make_pair(0, 0), [](const auto &a, const auto &b){return std::make_pair(a.first + b.first, a.second + b.second);}, [&](const auto &x, const auto &e){return std::make_pair(x.first, x.second + x.first);}, [&](const auto &x, int v){return std::make_pair(x.first + plan[v], x.second);} ).result; ans += std::min_element( res.begin(), res.end(), [](const auto &a, const auto &b){return a.second < b.second;} )->second; } std::cout << ans << std::endl; } return 0; }