// The main code is at the very bottom. #[allow(unused_imports)] use { lib::byte::ByteChar, std::cell::{Cell, RefCell}, std::cmp::{ self, Ordering::{self, *}, Reverse, }, std::collections::*, std::convert::identity, std::fmt::{self, Debug, Display, Formatter}, std::io::prelude::*, std::iter::{self, FromIterator}, std::marker::PhantomData, std::mem, std::num::Wrapping, std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive}, std::process, std::rc::Rc, std::thread, std::time::{Duration, Instant}, std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize}, }; // https://github.com/rust-lang/rustc-hash/blob/5e09ea0a1c7ab7e4f9e27771f5a0e5a36c58d1bb/src/lib.rs // // Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // // LICENSE-MIT: // Permission is hereby granted, free of charge, to any // person obtaining a copy of this software and associated // documentation files (the "Software"), to deal in the // Software without restriction, including without // limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice // shall be included in all copies or substantial portions // of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF // ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED // TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT // SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR // IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. pub mod rustc_hash { use std::collections::{HashMap, HashSet}; use std::convert::TryInto; use std::hash::BuildHasherDefault; use std::hash::Hasher; use std::mem::size_of; use std::ops::BitXor; pub type FxHashMap = HashMap>; pub type FxHashSet = HashSet>; pub struct FxHasher { hash: usize, } #[cfg(target_pointer_width = "32")] const K: usize = 0x9e3779b9; #[cfg(target_pointer_width = "64")] const K: usize = 0x517cc1b727220a95; impl Default for FxHasher { #[inline] fn default() -> FxHasher { FxHasher { hash: 0 } } } impl FxHasher { #[inline] fn add_to_hash(&mut self, i: usize) { self.hash = self.hash.rotate_left(5).bitxor(i).wrapping_mul(K); } } impl Hasher for FxHasher { #[inline] fn write(&mut self, mut bytes: &[u8]) { #[cfg(target_pointer_width = "32")] let read_usize = |bytes: &[u8]| u32::from_ne_bytes(bytes[..4].try_into().unwrap()); #[cfg(target_pointer_width = "64")] let read_usize = |bytes: &[u8]| u64::from_ne_bytes(bytes[..8].try_into().unwrap()); let mut hash = FxHasher { hash: self.hash }; assert!(size_of::() <= 8); while bytes.len() >= size_of::() { hash.add_to_hash(read_usize(bytes) as usize); bytes = &bytes[size_of::()..]; } if (size_of::() > 4) && (bytes.len() >= 4) { hash.add_to_hash(u32::from_ne_bytes(bytes[..4].try_into().unwrap()) as usize); bytes = &bytes[4..]; } if (size_of::() > 2) && bytes.len() >= 2 { hash.add_to_hash(u16::from_ne_bytes(bytes[..2].try_into().unwrap()) as usize); bytes = &bytes[2..]; } if (size_of::() > 1) && bytes.len() >= 1 { hash.add_to_hash(bytes[0] as usize); } self.hash = hash.hash; } #[inline] fn write_u8(&mut self, i: u8) { self.add_to_hash(i as usize); } #[inline] fn write_u16(&mut self, i: u16) { self.add_to_hash(i as usize); } #[inline] fn write_u32(&mut self, i: u32) { self.add_to_hash(i as usize); } #[cfg(target_pointer_width = "32")] #[inline] fn write_u64(&mut self, i: u64) { self.add_to_hash(i as usize); self.add_to_hash((i >> 32) as usize); } #[cfg(target_pointer_width = "64")] #[inline] fn write_u64(&mut self, i: u64) { self.add_to_hash(i as usize); } #[inline] fn write_usize(&mut self, i: usize) { self.add_to_hash(i); } #[inline] fn finish(&self) -> u64 { self.hash as u64 } } } #[allow(unused_imports)] #[macro_use] pub mod lib { pub mod byte { pub use self::byte_char::*; mod byte_char { use std::error::Error; use std::fmt::{self, Debug, Display, Formatter}; use std::str::FromStr; #[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] #[repr(transparent)] pub struct ByteChar(pub u8); impl Debug for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "b'{}'", self.0 as char) } } impl Display for ByteChar { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "{}", self.0 as char) } } impl FromStr for ByteChar { type Err = ParseByteCharError; fn from_str(s: &str) -> Result { match s.as_bytes().len() { 1 => Ok(ByteChar(s.as_bytes()[0])), 0 => Err(ParseByteCharErrorKind::EmptyStr.into()), _ => Err(ParseByteCharErrorKind::TooManyBytes.into()), } } } #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub struct ParseByteCharError { kind: ParseByteCharErrorKind, } impl Display for ParseByteCharError { fn fmt(&self, f: &mut Formatter) -> fmt::Result { f.write_str(match self.kind { ParseByteCharErrorKind::EmptyStr => "empty string", ParseByteCharErrorKind::TooManyBytes => "too many bytes", }) } } impl Error for ParseByteCharError {} #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] enum ParseByteCharErrorKind { EmptyStr, TooManyBytes, } impl From for ParseByteCharError { fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError { ParseByteCharError { kind } } } } } pub mod io { pub use self::scanner::*; mod scanner { use std::io::{self, BufRead}; use std::iter; use std::str::FromStr; #[derive(Debug)] pub struct Scanner { reader: R, buf: String, pos: usize, } impl Scanner { pub fn new(reader: R) -> Self { Scanner { reader, buf: String::new(), pos: 0, } } pub fn next(&mut self) -> io::Result<&str> { let start = loop { match self.rest().find(|c| c != ' ') { Some(i) => break i, None => self.fill_buf()?, } }; self.pos += start; let len = self.rest().find(' ').unwrap_or(self.rest().len()); let s = &self.buf[self.pos..][..len]; // self.rest()[..len] self.pos += len; Ok(s) } pub fn parse_next(&mut self) -> io::Result> where T: FromStr, { Ok(self.next()?.parse()) } pub fn parse_next_n(&mut self, n: usize) -> io::Result, T::Err>> where T: FromStr, { iter::repeat_with(|| self.parse_next()).take(n).collect() } pub fn map_next_bytes(&mut self, mut f: F) -> io::Result> where F: FnMut(u8) -> T, { Ok(self.next()?.bytes().map(&mut f).collect()) } pub fn map_next_bytes_n(&mut self, n: usize, mut f: F) -> io::Result>> where F: FnMut(u8) -> T, { iter::repeat_with(|| self.map_next_bytes(&mut f)) .take(n) .collect() } fn rest(&self) -> &str { &self.buf[self.pos..] } fn fill_buf(&mut self) -> io::Result<()> { self.buf.clear(); self.pos = 0; let read = self.reader.read_line(&mut self.buf)?; if read == 0 { return Err(io::ErrorKind::UnexpectedEof.into()); } if *self.buf.as_bytes().last().unwrap() == b'\n' { self.buf.pop(); } Ok(()) } } } } } #[allow(unused_macros)] macro_rules! eprint { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::eprint!($($arg)*) } }; } #[allow(unused_macros)] macro_rules! eprintln { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::eprintln!($($arg)*) } }; } #[allow(unused_macros)] macro_rules! dbg { ($($arg:tt)*) => { if cfg!(debug_assertions) { std::dbg!($($arg)*) } else { ($($arg)*) } }; } const CUSTOM_STACK_SIZE_MIB: Option = Some(128); const INTERACTIVE: bool = false; fn main() -> std::io::Result<()> { match CUSTOM_STACK_SIZE_MIB { Some(stack_size_mib) => std::thread::Builder::new() .name("run_solver".to_owned()) .stack_size(stack_size_mib * 1024 * 1024) .spawn(run_solver)? .join() .unwrap(), None => run_solver(), } } fn run_solver() -> std::io::Result<()> { let stdin = std::io::stdin(); let reader = stdin.lock(); let stdout = std::io::stdout(); let writer = stdout.lock(); macro_rules! with_wrapper { ($($wrapper:expr)?) => {{ let mut writer = $($wrapper)?(writer); solve(reader, &mut writer)?; writer.flush() }}; } if cfg!(debug_assertions) { with_wrapper!() } else if INTERACTIVE { with_wrapper!(std::io::LineWriter::new) } else { with_wrapper!(std::io::BufWriter::new) } } fn solve(reader: R, mut writer: W) -> std::io::Result<()> where R: BufRead, W: Write, { let mut _scanner = lib::io::Scanner::new(reader); #[allow(unused_macros)] macro_rules! scan { ($T:ty) => { _scanner.parse_next::<$T>()?.unwrap() }; ($($T:ty),+) => { ($(scan!($T)),+) }; ($T:ty; $n:expr) => { _scanner.parse_next_n::<$T>($n)?.unwrap() }; ($($T:ty),+; $n:expr) => { iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) }) .take($n) .collect::>>()? }; } #[allow(unused_macros)] macro_rules! scan_bytes_map { ($f:expr) => { _scanner.map_next_bytes($f)? }; ($f:expr; $n:expr) => { _scanner.map_next_bytes_n($n, $f)? }; } #[allow(unused_macros)] macro_rules! print { ($($arg:tt)*) => { write!(writer, $($arg)*)? }; } #[allow(unused_macros)] macro_rules! println { ($($arg:tt)*) => { writeln!(writer, $($arg)*)? }; } #[allow(unused_macros)] macro_rules! answer { ($($arg:tt)*) => {{ println!($($arg)*); return Ok(()); }}; } { let (n, m) = scan!(usize, usize); let mut a = rustc_hash::FxHashMap::with_capacity_and_hasher(n, <_>::default()); for _ in 0..n { let a_i = scan!(u64); *a.entry(a_i).or_default() += 1; } for _ in 0..m { let b_i = scan!(u64); print!("{} ", a.get(&b_i).copied().unwrap_or(0)); } println!(); } Ok(()) }