#pragma region kyopro_template #include #define pb push_back #define eb emplace_back #define fi first #define se second #define each(x, v) for (auto &x : v) #define all(v) (v).begin(), (v).end() #define sz(v) ((int)(v).size()) #define mem(a, val) memset(a, val, sizeof(a)) #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define inc(...) \ char __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) using namespace std; void solve(); using ll = long long; template using V = vector; using vi = vector; using vl = vector; using vvi = vector>; using vd = V; using vs = V; using vvl = vector>; using P = pair; using vp = vector

; using pii = pair; using vpi = vector>; constexpr int inf = 1001001001; constexpr long long infLL = (1LL << 61) - 1; template inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template ll ceil(T a, U b) { return (a + b - 1) / b; } constexpr ll TEN(int n) { ll ret = 1, x = 10; while (n) { if (n & 1) ret *= x; x *= x; n >>= 1; } return ret; } template ostream &operator<<(ostream &os, const pair &p) { os << p.first << " " << p.second; return os; } template istream &operator>>(istream &is, pair &p) { is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const vector &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template istream &operator>>(istream &is, vector &v) { for (auto &x : v) is >> x; return is; } void in() {} template void in(T &t, U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template void out(const T &t, const U &... u) { cout << t; if (sizeof...(u)) cout << " "; out(u...); } template void die(T x) { out(x); exit(0); } #ifdef NyaanDebug #include "NyaanDebug.h" #define trc(...) \ do { \ cerr << #__VA_ARGS__ << " = "; \ dbg_out(__VA_ARGS__); \ } while (0) #define trca(v, N) \ do { \ cerr << #v << " = "; \ array_out(v, N); \ } while (0) #define trcc(v) \ do { \ cerr << #v << " = {"; \ each(x, v) { cerr << " " << x << ","; } \ cerr << "}" << endl; \ } while (0) #else #define trc(...) #define trca(...) #define trcc(...) int main() { solve(); } #endif struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); } inline int lsb(unsigned long long a) { return __builtin_ctzll(a); } inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); } template inline int getbit(T a, int i) { return (a >> i) & 1; } template inline void setbit(T &a, int i) { a |= (1LL << i); } template inline void delbit(T &a, int i) { a &= ~(1LL << i); } template int lb(const vector &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template int ub(const vector &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } template vector mkrui(const vector &v) { vector ret(v.size() + 1); for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; return ret; }; template vector mkuni(const vector &v) { vector ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template vector mkord(int N, F f) { vector ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template vector mkiota(int N) { vector ret(N); iota(begin(ret), end(ret), 0); return ret; } #pragma endregion constexpr long long MOD = /** 1000000007; //*/ 998244353; // Prime -> 1 {0, 0, 1, 1, 0, 1, 0, 1, ...} vector Primes(int N) { vector A(N + 1, 1); A[0] = A[1] = 0; for (int i = 2; i * i <= N; i++) if (A[i] == 1) for (int j = i << 1; j <= N; j += i) A[j] = 0; return A; } // Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...} vector PrimeSieve(int N) { vector prime = Primes(N); vector ret; for (int i = 0; i < (int)prime.size(); i++) if (prime[i] == 1) ret.push_back(i); return ret; } // Factors (using for fast factorization) // {0, 0, 1, 1, 2, 1, 2, 1, 2, 3, ...} vector Factors(int N) { vector A(N + 1, 1); A[0] = A[1] = 0; for (int i = 2; i * i <= N; i++) if (A[i] == 1) for (int j = i << 1; j <= N; j += i) A[j] = i; return A; } // totient function φ(N)=(1 ~ N , gcd(i,N) = 1) // {0, 1, 1, 2, 4, 2, 6, 4, ... } vector EulersTotientFunction(int N) { vector ret(N + 1, 0); for (int i = 0; i <= N; i++) ret[i] = i; for (int i = 2; i <= N; i++) { if (ret[i] == i) for (int j = i; j <= N; j += i) ret[j] = ret[j] / i * (i - 1); } return ret; } // Divisor ex) 12 -> {1, 2, 3, 4, 6, 12} vector Divisor(long long N) { vector v; for (long long i = 1; i * i <= N; i++) { if (N % i == 0) { v.push_back(i); if (i * i != N) v.push_back(N / i); } } return v; } // Factorization // ex) 18 -> { (2,1) , (3,2) } vector > PrimeFactors(long long N) { vector > ret; for (long long p = 2; p * p <= N; p++) if (N % p == 0) { ret.emplace_back(p, 0); while (N % p == 0) N /= p, ret.back().second++; } if (N >= 2) ret.emplace_back(N, 1); return ret; } // Factorization with Prime Sieve // ex) 18 -> { (2,1) , (3,2) } vector > PrimeFactors(long long N, const vector &prime) { vector > ret; for (auto &p : prime) { if (p * p > N) break; if (N % p == 0) { ret.emplace_back(p, 0); while (N % p == 0) N /= p, ret.back().second++; } } if (N >= 2) ret.emplace_back(N, 1); return ret; } // modpow for mod < 2 ^ 31 long long modpow(long long a, long long n, long long mod) { a %= mod; long long ret = 1; while (n > 0) { if (n & 1) ret = ret * a % mod; a = a * a % mod; n >>= 1; } return ret % mod; }; // Check if r is Primitive Root bool isPrimitiveRoot(long long r, long long mod) { r %= mod; if (r == 0) return false; auto pf = PrimeFactors(mod - 1); for (auto &x : pf) { if (modpow(r, (mod - 1) / x.first, mod) == 1) return false; } return true; } // Get Primitive Root long long PrimitiveRoot(long long mod) { long long ret = 1; while (isPrimitiveRoot(ret, mod) == false) ret++; return ret; } // Extended Euclidean algorithm // solve : ax + by = gcd(a, b) long long extgcd(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extgcd(b, a % b, y, x); y -= a / b * x; return d; } // Check if n is Square Number bool isSquare(ll n) { if(n == 0 || n == 1) return true; ll d = (ll)sqrt(n) - 1; while (d * d < n) ++d; return d * d == n; } // return a number of n's digit // zero ... return value if n = 0 (default -> 1) int isDigit(ll n, int zero = 1) { if (n == 0) return zero; int ret = 0; while (n) { n /= 10; ret++; } return ret; } void solve(){ ini(N); if(N == 1) die(1); vl prime = PrimeSieve(200200); int id = lb(prime,100000LL); out(prime[id + N - 2]); }