#include using namespace std; #define rep(i,m,n) for(int (i)=(int)(m);i<(int)(n);++i) #define rep2(i,m,n) for(int (i)=(int)(n)-1;i>=(int)(m);--i) #define REP(i,n) rep(i,0,n) #define REP2(i,n) rep2(i,0,n) #define FOR(i,c) for(decltype((c).begin())i=(c).begin();i!=(c).end();++i) #define all(hoge) (hoge).begin(),(hoge).end() #define en '\n' using ll = long long; using ull = unsigned long long; template using vec = vector; template using vvec = vector>; typedef pair P; constexpr long long INF = 1LL << 60; constexpr int INF_INT = 1 << 25; //constexpr long long MOD = (ll) 1e9 + 7; constexpr long long MOD = 998244353LL; using ld=long double; static const ld pi = 3.141592653589793L; typedef vector Array; typedef vector Matrix; template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } struct Edge { ll to, rev; long double cap; Edge(ll _to, long double _cap, ll _rev) { to = _to; cap = _cap; rev = _rev; } }; using Edges = vector; using Graph = vector; void add_edge(Graph& G, ll from, ll to, long double cap, bool revFlag, long double revCap) { G[from].push_back(Edge(to, cap, (ll)G[to].size())); if (revFlag)G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1)); } using P2 = pair; void Dijkstra(Graph& G, ll s, vec& d) {//O(|E|log|V|) d.resize(G.size()); REP(i, d.size())d[i] = INF; d[s] = 0; priority_queue, greater> q; q.push(make_pair(0.0L, s)); while (!q.empty()) { P a = q.top(); q.pop(); if (d[a.second] < a.first)continue; REP(i, G[a.second].size()) { Edge e = G[a.second][i]; if (d[e.to] > d[a.second] + e.cap) { d[e.to] = d[a.second] + e.cap; q.push(make_pair(d[e.to], e.to)); } } } } void solve(){ ll n,m,x,y; cin>>n>>m>>x>>y; x--;y--; vec p(n),q(n); REP(i,n) cin>>p[i]>>q[i]; auto dis = [&](int i, int j){ return sqrt((p[i]-p[j])*(p[i]-p[j])+(q[i]-q[j])*(q[i]-q[j])); }; Graph g(n); REP(i,m){ ll a,b; cin>>a>>b; a--;b--; add_edge(g,a,b,dis(a,b),true,dis(a,b)); } vec d; Dijkstra(g,x,d); cout<>t;REP(i,t) solve(); return 0; }