/* confirm 0LL and 1LL confirm cornercases such as 0 confirm times of cin < 10^6 */ #include using namespace std; using ll = long long; using ld = long double; using P = pair; using Pld = pair; using Vec = vector; using VecP = vector

; using VecB = vector; using VecC = vector; using VecD = vector; using VecS = vector; using Graph = vector; template using Vec1 = vector; template using Vec2 = vector >; #define REP(i, m, n) for(ll i = (m); (i) < (n); ++(i)) #define REPN(i, m, n) for(ll i = (m); (i) <= (n); ++(i)) #define REPR(i, m, n) for(ll i = (m)-1; (i) >= (n); --(i)) #define REPNR(i, m, n) for(ll i = (m); (i) >= (n); --(i)) #define rep(i, n) REP(i, 0, n) #define repn(i, n) REPN(i, 1, n) #define repr(i, n) REPR(i, n, 0) #define repnr(i, n) REPNR(i, n, 1) #define all(s) (s).begin(), (s).end() #define pb push_back #define fs first #define sc second template bool chmax(T &a, const T b){if(a < b){a = b; return true;} return false;} template bool chmin(T &a, const T b){if(a > b){a = b; return true;} return false;} template ll pow2(const T n){return (1LL << n);} template void cosp(const T n){cout << n << ' ';} void co(void){cout << '\n';} template void co(const T n){cout << n << '\n';} template void co(pair p){cout << p.fs << ' ' << p.sc << '\n';} template void co(const Vec1 &v){for(T i : v) cosp(i); co();} template void co(initializer_list v){for(T i : v) cosp(i); co();} template void ce(const T n){cerr << n << endl;} void sonic(){ios::sync_with_stdio(false); cin.tie(0);} void setp(const ll n){cout << fixed << setprecision(n);} constexpr int INF = 1e9+1; constexpr ll LINF = 1e18+1; // constexpr ll MOD = 1e9+7; constexpr ll MOD = 998244353; constexpr ld EPS = 1e-11; const ld PI = acos(-1); Vec fac, finv; ll PowMod(ll a, ll n){ if(n < 0) return PowMod(PowMod(a, -n), MOD-2); if(n == 0) return 1; if(n == 1) return a; if(n%2 == 0) return PowMod(a*a%MOD, n/2); return a*PowMod(a*a%MOD, n/2)%MOD; } ll inv(ll n){ return PowMod(n, MOD - 2); } void init(ll n = 2e6){ fac.resize(n+1); fac[0] = 1; repn(i, n) fac[i] = fac[i-1]*i%MOD; finv.resize(n+1); finv[n] = PowMod(fac[n], MOD-2); repr(i, n) finv[i] = finv[i+1]*(i+1)%MOD; finv[0] = 1; } ll combi(ll n, ll k){ return fac[n]*finv[k]%MOD*finv[n-k]%MOD; } template struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt res(1), mul(x); while(n > 0) { if(n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using Mint = ModInt; Mint dp[6005][6005] = {}; int main(void){ ll n, q; cin >> n >> q; Vec a(n); rep(i, n) cin >> a[i]; rep(i, n) --a[i]; Vec b(q); rep(i, q) cin >> b[i]; init(); rep(i, n) dp[0][i] = a[i]; repr(i, n - 1) dp[0][i] += dp[0][i + 1]; repn(i, n){ rep(j, n) dp[i][j] = dp[i - 1][j + 1] * a[j]; repr(j, n - 1) dp[i][j] += dp[i][j + 1]; } rep(i, q){ if(b[i] == n) co(1); else co(dp[n - b[i] - 1][0]); } return 0; }