import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } void main() { try { for (; ; ) { const N = readInt(); const M = readInt(); const K = readInt(); const S = readInt() - 1; const T = readInt() - 1; auto X = new real[N]; auto Y = new real[N]; foreach (u; 0 .. N) { X[u] = readReal(); Y[u] = readReal(); } auto A = new int[M]; auto B = new int[M]; foreach (i; 0 .. M) { A[i] = readInt() - 1; B[i] = readInt() - 1; } auto dist = new real[][](N, N); foreach (u; 0 .. N) foreach (v; 0 .. N) { dist[u][v] = sqrt((X[v] - X[u])^^2 + (Y[v] - Y[u])^^2); } auto on = new bool[N]; on[] = true; auto graph = new RedBlackTree!int[N]; foreach (u; 0 .. N) { graph[u] = new RedBlackTree!int; } foreach (i; 0 .. M) { graph[A[i]].insert(B[i]); graph[B[i]].insert(A[i]); } alias Path = Tuple!(real, "cost", int[], "us"); Path dijkstra(int s, int t) { assert(on[s]); assert(on[t]); alias Entry = Tuple!(real, "c", int, "u"); BinaryHeap!(Array!Entry, "a > b") que; auto ds = new real[N]; ds[] = real.infinity; auto vis = new bool[N]; auto prev = new int[N]; prev[] = -1; ds[s] = 0.0L; que.insert(Entry(0.0L, s)); for (; !que.empty; ) { const c = que.front.c; const u = que.front.u; que.removeFront; if (!vis[u]) { vis[u] = true; if (u == t) { break; } foreach (v; graph[u]) { if (on[v]) { if (!vis[v]) { const cc = c + dist[u][v]; if (chmin(ds[v], cc)) { prev[v] = u; que.insert(Entry(cc, v)); } } } } } } Path ret; if (vis[t]) { ret.cost = ds[t]; for (int u = t; u != -1; u = prev[u]) { ret.us ~= u; } ret.us.reverse; } return ret; } // https://en.wikipedia.org/wiki/Yen%27s_algorithm auto ans = new Path[K]; ans[0] = dijkstra(S, T); assert(!ans[0].us.empty); debug { writeln("ans[0] = ", ans[0]); } auto bs = new RedBlackTree!Path; foreach (k; 1 .. K) { foreach (i; 0 .. cast(int)(ans[k - 1].us.length) - 1) { const spurNode = ans[k - 1].us[i]; auto rootPath = ans[k - 1].us[0 .. i + 1]; foreach (l; 0 .. k) { if (i + 1 <= ans[l].us.length && rootPath == ans[l].us[0 .. i + 1]) { const u = ans[l].us[i]; const v = ans[l].us[i + 1]; graph[u].removeKey(v); graph[v].removeKey(u); } } foreach (u; rootPath) { if (u != S && u != spurNode) { on[u] = false; } } auto spurPath = dijkstra(spurNode, T); if (!spurPath.us.empty) { Path totalPath; totalPath.cost = spurPath.cost; foreach (j; 0 .. i) { totalPath.cost += dist[rootPath[j]][rootPath[j + 1]]; } totalPath.us = rootPath ~ spurPath.us[1 .. $]; bs.insert(totalPath); } foreach (l; 0 .. k) { if (i + 1 <= ans[l].us.length && rootPath == ans[l].us[0 .. i + 1]) { const u = ans[l].us[i]; const v = ans[l].us[i + 1]; graph[u].insert(v); graph[v].insert(u); } } foreach (u; rootPath) { if (u != S && u != spurNode) { on[u] = true; } } } if (bs.empty) { break; } ans[k] = bs.front; bs.removeFront; debug { writefln("ans[%s] = %s", k, ans[k]); } } foreach (k; 0 .. K) { if (ans[k].us.empty) { writeln("-1"); } else { writefln("%.12f", ans[k].cost); } } } } catch (EOFException e) { } }