#include using namespace std; using lint = long long int; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(6); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template void ndarray(vector &vec, int len) { vec.resize(len); } template void ndarray(vector &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template pair operator+(const pair &l, const pair &r) { return make_pair(l.first + r.first, l.second + r.second); } template pair operator-(const pair &l, const pair &r) { return make_pair(l.first - r.first, l.second - r.second); } template istream &operator>>(istream &is, vector &vec){ for (auto &v : vec) is >> v; return is; } template ostream &operator<<(ostream &os, const vector &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const deque &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const pair &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; } template ostream &operator<<(ostream &os, const map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; /* #include #include #include using namespace __gnu_pbds; // find_by_order(), order_of_key() template using pbds_set = tree, rb_tree_tag, tree_order_statistics_node_update>; template using pbds_map = tree, rb_tree_tag, tree_order_statistics_node_update>; */ template struct ShortestPath { int V, E; int INVALID = -1; std::vector>> to; ShortestPath() = default; ShortestPath(int V) : V(V), E(0), to(V) {} void add_edge(int s, int t, T len) { assert(0 <= s and s < V); assert(0 <= t and t < V); to[s].emplace_back(t, len); E++; } std::vector dist; std::vector prev; // Dijkstra algorithm // Complexity: O(E log E) void Dijkstra(int s) { assert(0 <= s and s < V); dist.assign(V, 1e18); dist[s] = 0; prev.assign(V, INVALID); using P = std::pair; std::priority_queue, std::greater

> pq; pq.emplace(0, s); while(!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (dist[v] < d) continue; for (auto nx : to[v]) { T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Bellman-Ford algorithm // Complexity: O(VE) bool BellmanFord(int s, int nb_loop) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits::max()); dist[s] = 0; prev.assign(V, INVALID); for (int l = 0; l < nb_loop; l++) { bool upd = false; for (int v = 0; v < V; v++) { if (dist[v] == std::numeric_limits::max()) continue; for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; upd = true; } } } if (!upd) return true; } return false; } // Warshall-Floyd algorithm // Complexity: O(E + V^3) std::vector> dist2d; void WarshallFloyd() { dist2d.assign(V, std::vector(V, std::numeric_limits::max())); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second); } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] = std::numeric_limits::max()) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] = std::numeric_limits::max()) continue; dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } } }; using BS = bitset<4000>; int serial; struct P_ { double first; BS second; BS third; int id_; P_() = default; P_(double a, BS b, BS path) : first(a), second(b), third(path), id_(serial++) {} // bool operator<(const P_ &x) const { return first < x.first; } bool operator>(const P_ &x) const { if (first != x.first) return first > x.first; return id_ > x.id_; } }; int main() { int N, M, K; int X, Y; cin >> N >> M >> K >> X >> Y; X--, Y--; vector P(N), Q(N); REP(i, N) cin >> P[i] >> Q[i]; vector e(M * 2); vector from(M * 2), to(M * 2); ShortestPath graph(N); map e2id; REP(i, M) { int s, t; cin >> s >> t; s--, t--; double dx = P[s] - P[t]; double dy = Q[s] - Q[t]; e[i] = e[i + M] = sqrt(dx * dx + dy * dy); from[i] = to[i + M] = s; from[i + M] = to[i] = t; graph.add_edge(s, t, e[i]); graph.add_edge(t, s, e[i]); e2id[pint(s, t)] = i; e2id[pint(t, s)] = i + M; } graph.Dijkstra(X); BS path; path.reset(); int now = Y; while (now != X) { int prv = graph.prev[now]; path[e2id[pint(prv, now)]] = 1; now = prv; } vector checked; priority_queue, greater> pq; vector alivebs; vector pathbs; vector ret; BS state_; REP(i, M * 2) state_[i] = 1; checked.emplace_back(state_); alivebs.emplace_back(state_); pathbs.emplace_back(path); ret.emplace_back(graph.dist[Y]); while (ret.size() < K) { REP(eban, M * 2) if (pathbs.back()[eban]) { BS b = alivebs.back(); b[eban] = 0; ShortestPath graph(N); REP(i, M * 2) if (b[i]) { graph.add_edge(from[i], to[i], e[i]); } graph.Dijkstra(X); if (graph.dist[Y] > 1e16) continue; BS path; int now = Y; while (now != X) { int prv = graph.prev[now]; path[e2id[pint(prv, now)]] = 1; now = prv; } pq.emplace(graph.dist[Y], b, path); } bool flg_conti = true; while (true) { if (pq.empty()) { flg_conti = false; break; } bool bad = false; for (auto x : pathbs) { if (x == pq.top().third) bad = true; } if (!bad) { ret.emplace_back(pq.top().first); } alivebs.emplace_back(pq.top().second); pathbs.emplace_back(pq.top().third); pq.pop(); break; } if (!flg_conti) break; } if (ret.size() < K) ret.resize(K, -1); REP(i, K) { if (ret[i] >= 0) cout << ret[i] << '\n'; else cout << -1 << '\n'; } }