//#include #include "bits/stdc++.h" using namespace std; typedef long long ll; /* #include "boost/multiprecision/cpp_int.hpp" #include "boost/multiprecision/cpp_dec_float.hpp" namespace mp = boost::multiprecision; typedef mp::cpp_int LL; typedef mp::number> DD;// 仮数部が1024ビットの浮動小数点数型(TLEしたら小さくする) */ typedef long double dd; //#define i_7 (ll)(1E9+7) #define i_7 998244353 #define i_5 i_7-2 ll mod(ll a){ ll c=a%i_7; if(c>=0)return c; return c+i_7; } typedef pair l_l; typedef pair d_d; ll inf=(ll)1E16; #define rep(i,l,r) for(ll i=l;i<=r;i++) #define pb push_back ll max(ll a,ll b){if(ab)return b;else return a;} void Max(ll &pos,ll val){pos=max(pos,val);}//Max(dp[n],dp[n-1]); void Min(ll &pos,ll val){pos=min(pos,val);} void Add(ll &pos,ll val){pos=mod(pos+val);} dd EPS=1E-9; #define fastio ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); #define fi first #define se second #define endl "\n" #define SORT(v) sort(v.begin(),v.end()) #define ERASE(v) v.erase(unique(v.begin(),v.end()),v.end()) #define POSL(v,x) (lower_bound(v.begin(),v.end(),x)-v.begin()) #define POSU(v,x) (upper_bound(v.begin(),v.end(),x)-v.begin()) template inline bool chmax(T &a, T b) { if(a < b) { a = b; return true; } return false; } template inline bool chmin(T &a, T b) { if(a > b) { a = b; return true; } return false; } void mod_print(ll k){ ll P=1000; rep(y,1,P){ ll x=mod(y*k); if(x+P>=i_7){ x-=i_7; } if(abs(x)<=P){ cout< struct NumberTheoreticTransform { vector< ll > rev, rts; ll base, max_base, root; NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} { assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(mod_pow(root, (mod - 1) >> 1) == 1) ++root; assert(mod_pow(root, mod - 1) == 1); root = mod_pow(root, (mod - 1) >> max_base); } inline ll mod_pow(ll x, ll n) { ll ret = 1; while(n > 0) { if(n & 1) ret = mul(ret, x); x = mul(x, x); n >>= 1; } return ret; } inline ll inverse(ll x) { return mod_pow(x, mod - 2); } inline ll add(ll x, ll y) { x += y; if(x >= mod) x -= mod; return x; } inline ll mul(ll a, ll b) { return 1ull * a * b % mod; } void ensure_base(ll nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(ll i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } assert(nbase <= max_base); while(base < nbase) { ll z = mod_pow(root, 1 << (max_base - 1 - base)); for(ll i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; rts[(i << 1) + 1] = mul(rts[i], z); } ++base; } } void ntt(vector< ll > &a) { const ll n = (ll) a.size(); assert((n & (n - 1)) == 0); ll zeros = __builtin_ctzll(n); ensure_base(zeros); ll shift = base - zeros; for(ll i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(ll k = 1; k < n; k <<= 1) { for(ll i = 0; i < n; i += 2 * k) { for(ll j = 0; j < k; j++) { ll z = mul(a[i + j + k], rts[j + k]); a[i + j + k] = add(a[i + j], mod - z); a[i + j] = add(a[i + j], z); } } } } vector< ll > multiply(vector< ll > a, vector< ll > b) { ll need = a.size() + b.size() - 1; ll nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); ll sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); ll inv_sz = inverse(sz); for(ll i = 0; i < sz; i++) { a[i] = mul(a[i], mul(b[i], inv_sz)); } reverse(a.begin() + 1, a.end()); ntt(a); a.resize(need); return a; } }; NumberTheoreticTransform ntt; //////////////////////////////////////////////////////////////////////////////// //vectora(2),b(3); //rep(i,0,1)cin>>a[i]; //rep(i,0,2)cin>>b[i]; //auto c=ntt.multiply(a,b); //for(auto x:c)cout< solve(int l, int r){ if(l==r){ vector ret{a[l], 1}; return ret; } int m=(l+r)/2; auto pl=solve(l, m), pr=solve(m+1, r); return ntt.multiply(pl, pr); } ll SOLVE(){ cin>>n>>q; int b[6060]; for(int i=0; i>a[i]; a[i]=(a[i]-1)%MOD; } auto ans=solve(0, n-1); for(int i=0; i(end - start) / CLOCKS_PER_SEC * 1000.0; cerr<