class Graph(): #non-directed def __init__(self, n, edge, indexed=1): self.n = n self.edge = edge self.indexed = indexed self.graph = [[] for _ in range(n)] for e in edge: self.graph[e[0] - indexed].append((e[1] - indexed, e[2])) self.graph[e[1] - indexed].append((e[0] - indexed, e[2])) def kruskal(self): #UnionFind edgemap = {self.edge[i]: i for i in range(len(self.edge))} sortedge = sorted(self.edge, key=lambda x: x[2]) uf = UnionFind(self.n) res = 0 restored = [] for e in sortedge: if uf.find(e[0] - self.indexed) != uf.find(e[1] - self.indexed): res += e[2] restored.append(edgemap[e]) uf.unite(e[0] - self.indexed, e[1] - self.indexed) return res, restored class UnionFind(): def __init__(self, n): self.n = n self.parents = [i for i in range(n)] self.rank = [0 for _ in range(n)] self.size = [1 for _ in range(n)] def find(self, x): root = x while self.parents[root] != root: root = self.parents[root] while self.parents[x] != root: parent = self.parents[x] self.parents[x] = root x = parent return root def unite(self, x, y): xroot = self.find(x) yroot = self.find(y) if xroot == yroot: return xrank = self.rank[xroot] yrank = self.rank[yroot] if xrank < yrank: self.parents[xroot] = yroot self.size[yroot] += self.size[xroot] elif xrank == yrank: self.parents[yroot] = xroot self.rank[yroot] += 1 self.size[xroot] += self.size[yroot] else: self.parents[yroot] = xroot self.size[xroot] += self.size[yroot] L, R = map(int, input().split()) N = R - L + 1 E = [] for i in range(N - 1): E.append((i, i + 1, 1)) for i in range(L, R + 1): for j in range(2 * i, R + 1, i): E.append((i - L, j - L, 0)) g = Graph(N, E, 0) print(g.kruskal()[0])