#include <bits/stdc++.h> using namespace std; using ll = long long; #define ALL(obj) (obj).begin(),(obj).end() #define SPEED cin.tie(0);ios::sync_with_stdio(false); template<class T> using PQ = priority_queue<T>; template<class T> using PQR = priority_queue<T,vector<T>,greater<T>>; constexpr long long MOD = (long long)1e9 + 7; constexpr long long MOD2 = 998244353; constexpr long long HIGHINF = (long long)1e18; constexpr long long LOWINF = (long long)1e15; constexpr long double PI = 3.1415926535897932384626433L; template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);} template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));} template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}} template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} template <template <class tmp> class T, class U> ostream &operator<<(ostream &o, const T<U> &obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr)o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} void print(void) {cout << endl;} template <class Head> void print(Head&& head) {cout << head;print();} template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);} template <class T> void chmax(T& a, const T b){a=max(a,b);} template <class T> void chmin(T& a, const T b){a=min(a,b);} void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;} void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;} void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;} /* * @title NumberTheoreticTransform */ template<int mod, int root = 3> class NumberTheoreticTransform { inline static constexpr long long gcd(long long a, long long b) { return (b ? gcd(b, a % b):a); } inline static long long ext_gcd(long long a, long long b, long long &x, long long &y) { long long res; if (b == 0) res = a,x = 1,y = 0; else res = ext_gcd(b, a%b, y, x), y -= a/b * x; return res; } inline static long long inv_mod(long long a, long long b) { long long x, y; ext_gcd(a, b, x, y); return (x%b+b)%b; } inline static long long pow_mod(long long x, long long n, long long m) { long long res = 1; for (; n > 0; n >>= 1, (x *= x) %= m) if (n & 1) (res *= x) %= m; return res; } inline static long long garner(vector<long long> b, vector<long long> m, long long d){ int N=b.size(); vector<long long> coe(N+1,1),val(N+1,0); long long g,gl,gr,sum=accumulate(b.begin(),b.end(),0LL); //互いに素になるように処理 for (int l = 0; l < N; ++l) { for (int r = l+1; r < N; ++r) { g = gcd(m[l], m[r]); if (sum && (b[l] - b[r]) % g != 0) return -1; m[l] /= g, m[r] /= g; gl = gcd(m[l], g), gr = g/gl; do { g = gcd(gl, gr); gl *= g, gr /= g; } while (g != 1); m[l] *= gl, m[r] *= gr; b[l] %= m[l], b[r] %= m[r]; } } if(!sum) { long long lcm = 1; for(auto& e:m) (lcm*=e)%=d; return lcm; } m.push_back(d); for(int i = 0; i < N; ++i) { long long t = (b[i] - val[i]) * inv_mod(coe[i], m[i]); ((t %= m[i]) += m[i]) %= m[i]; for (int j = i+1; j <= N; ++j) { (val[j] += t * coe[j]) %= m[j]; (coe[j] *= m[i]) %= m[j]; } } return val.back(); } inline static void ntt(vector<long long>& f,int sgn=1) { int N = f.size(); int h = pow_mod(root, (mod - 1) / N, mod); if (sgn == -1) h = inv_mod(h, mod); for (int i = 0,j = 1; j < N - 1; ++j) { for (int k = N >> 1; k > (i ^= k); k >>= 1); if (j < i) swap(f[i], f[j]); } for (int i = 1,j = 2; i < N; i *= 2, j *= 2) { long long w = 1, base = pow_mod(h, N / j, mod); for(int k= 0;k < i; ++k, (w *= base) %= mod) { for (int l = k; l < N; l += j) { long long u = f[l]; long long d = f[l + i] * w % mod; f[l] = u + d; if (f[l] >= mod) f[l] -= mod; f[l + i] = u - d; if (f[l + i] < 0) f[l + i] += mod; } } } for (auto& x : f) if (x < 0) x += mod; } public: inline static vector<long long> convolution(vector<long long> g,vector<long long> h){ int N; for(N=1;N<g.size()+h.size(); N*=2); vector<long long> f(N); g.resize(N); h.resize(N); ntt(g); ntt(h); for(int i = 0; i < N; ++i) (f[i] = g[i]*h[i]) %= mod; ntt(f,-1); long long inv = inv_mod(N, mod); for (auto& x : f) x = x * inv % mod; return f; } inline static vector<long long> convolution_arbitrarymod(vector<long long> g, vector<long long> h){ for (auto& a : g) a %= mod; for (auto& a : h) a %= mod; const int mod1=167772161; const int mod2=469762049; const int mod3=1224736769; auto x = NumberTheoreticTransform<mod1>::convolution(g, h); auto y = NumberTheoreticTransform<mod2>::convolution(g, h); auto z = NumberTheoreticTransform<mod3>::convolution(g, h); vector<long long> res(x.size()),b(3),m(3); for(int i=0; i < x.size(); ++i){ m[0] = mod1, b[0] = x[i]; m[1] = mod2, b[1] = y[i]; m[2] = mod3, b[2] = z[i]; res[i] = garner(b, m, mod); } return res; } }; vector<vector<ll>> v; vector<ll> rec(int l, int r) { if(r-l==1) return v[l]; if(r-l==2) return NumberTheoreticTransform<MOD2>::convolution(v[l],v[l+1]); auto vl=rec(l,(l+r)/2); auto vr=rec((l+r)/2,r); return NumberTheoreticTransform<MOD2>::convolution(vl,vr); } int main() { SPEED int N,Q; cin >> N >> Q; vector<ll> A(N),B(Q); for(int i = 0; i < N; ++i) cin >> A[i],A[i] %= MOD2; for(int i = 0; i < Q; ++i) cin >> B[i]; v.resize(N); for(int i = 0; i < N; ++i) v[i].push_back(A[i]-1),v[i].push_back(1); auto c = rec(0,N); for(int i = 0; i < Q; ++i) { cout << c[B[i]] << endl; } return 0; }