/* #region Head */ #include using namespace std; using ll = long long; using ull = unsigned long long; using ld = long double; using pll = pair; template using vc = vector; template using vvc = vc>; using vll = vc; using vvll = vvc; using vld = vc; using vvld = vvc; using vs = vc; using vvs = vvc; template using um = unordered_map; template using pq = priority_queue; template using pqa = priority_queue, greater>; template using us = unordered_set; #define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i)) #define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i)) #define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i)) #define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d)) #define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d)) #define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++) #define ALL(x) begin(x), end(x) #define SIZE(x) ((ll)(x).size()) #define PERM(c) \ sort(ALL(c)); \ for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c))) #define UNIQ(v) v.erase(unique(ALL(v)), v.end()); #define endl '\n' #define sqrt sqrtl #define floor floorl #define log2 log2l constexpr ll INF = 1'010'000'000'000'000'017LL; constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7 constexpr ld EPS = 1e-12; constexpr ld PI = 3.14159265358979323846; template istream &operator>>(istream &is, vc &vec) { // vector 入力 for (T &x : vec) is >> x; return is; } template ostream &operator<<(ostream &os, vc &vec) { // vector 出力 (for dump) os << "{"; REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", "); os << "}"; return os; } template ostream &operator>>(ostream &os, vc &vec) { // vector 出力 (inline) REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " "); return os; } template istream &operator>>(istream &is, pair &pair_var) { // pair 入力 is >> pair_var.first >> pair_var.second; return is; } template ostream &operator<<(ostream &os, pair &pair_var) { // pair 出力 os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } // map, um, set, us 出力 template ostream &out_iter(ostream &os, T &map_var) { os << "{"; REPI(itr, map_var) { os << *itr; auto itrcp = itr; if (++itrcp != map_var.end()) os << ", "; } return os << "}"; } template ostream &operator<<(ostream &os, map &map_var) { return out_iter(os, map_var); } template ostream &operator<<(ostream &os, um &map_var) { os << "{"; REPI(itr, map_var) { auto [key, value] = *itr; os << "(" << key << ", " << value << ")"; auto itrcp = itr; if (++itrcp != map_var.end()) os << ", "; } os << "}"; return os; } template ostream &operator<<(ostream &os, set &set_var) { return out_iter(os, set_var); } template ostream &operator<<(ostream &os, us &set_var) { return out_iter(os, set_var); } template ostream &operator<<(ostream &os, pq &pq_var) { pq pq_cp(pq_var); os << "{"; if (!pq_cp.empty()) { os << pq_cp.top(), pq_cp.pop(); while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop(); } return os << "}"; } // dump #define DUMPOUT cerr void dump_func() { DUMPOUT << endl; } template void dump_func(Head &&head, Tail &&... tail) { DUMPOUT << head; if (sizeof...(Tail) > 0) DUMPOUT << ", "; dump_func(move(tail)...); } // chmax (更新「される」かもしれない値が前) template > bool chmax(T &xmax, const U &x, Comp comp = {}) { if (comp(xmax, x)) { xmax = x; return true; } return false; } // chmin (更新「される」かもしれない値が前) template > bool chmin(T &xmin, const U &x, Comp comp = {}) { if (comp(x, xmin)) { xmin = x; return true; } return false; } // ローカル用 #define DEBUG_ #ifdef DEBUG_ #define DEB #define dump(...) \ DUMPOUT << " " << string(#__VA_ARGS__) << ": " \ << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl \ << " ", \ dump_func(__VA_ARGS__) #else #define DEB if (false) #define dump(...) #endif struct AtCoderInitialize { static constexpr int IOS_PREC = 15; static constexpr bool AUTOFLUSH = false; AtCoderInitialize() { ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr); cout << fixed << setprecision(IOS_PREC); if (AUTOFLUSH) cout << unitbuf; } } ATCODER_INITIALIZE; string yes = "Yes", no = "No"; // string yes = "YES", no = "NO"; void yn(bool p) { cout << (p ? yes : no) << endl; } /* #endregion */ /* #region LazySegTree */ // 遅延評価セグメント木,区間更新したいときに使うやつ // 遅延伝播セグメント木について(旧:遅延評価セグメント木について) - beet's soil // http://beet-aizu.hatenablog.com/entry/2017/12/01/225955 template // T: 要素,E: 作用素 struct LazySegmentTree { using F = function; // 要素と要素をマージする関数.max とか. using G = function; // 要素に作用素を作用させる関数.加算とか. using H = function; // 作用素と作用素をマージする関数. ll n, height; // 木のノード数と高さ F f; // 区間クエリで使う演算,結合法則を満たす演算.区間最大値のクエリを投げたいなら max 演算. G g; // 要素更新で使う演算,たとえば加算など.g(更新前,加算値) の形で使う. H h; // 遅延評価をまとめる際に使う演算,たとえば加算など. T ti; // 値配列の初期値.演算 f, h に関する単位元.区間最大値なら単位元は 0. (a>0 なら max(a,0)=max(0,a)=a) E ei; // 遅延配列の初期値.演算 f, h に関する単位元.区間最大値なら単位元は 0. vc dat; // 1-indexed 値配列 (index は木の根から順に 1 | 2 3 | 4 5 6 7 | 8 9 10 11 12 13 14 15 | ...) vc laz; // 1-indexed 遅延配列 // コンストラクタ. LazySegmentTree(F f, G g, H h, T ti, E ei) : f(f), g(g), h(h), ti(ti), ei(ei) {} // 指定要素数の遅延セグメント木を初期化する void init(ll n_) { n = 1; height = 0; while (n < n_) n <<= 1, height++; dat.assign(2 * n, ti); laz.assign(2 * n, ei); } // ベクトルから遅延セグメント木を構築する void build(const vc &v) { ll n_ = SIZE(v); init(n_); REP(i, 0, n_) dat[n + i] = v[i]; REPR(i, n - 1, 1) dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]); } // 木のノード k のみに遅延評価を反映する inline T reflect(ll k) { return laz[k] == ei ? dat[k] : g(dat[k], laz[k]); } // 木のノード k について遅延伝搬処理を行う. // これにより dat[k] は更新を反映した状態になる. inline void propagate(ll k) { if (laz[k] == ei) return; // 直接の子ノードに遅延配列内容を伝搬 laz[(k << 1) | 0] = h(laz[(k << 1) | 0], laz[k]); // 子,左側 laz[(k << 1) | 1] = h(laz[(k << 1) | 1], laz[k]); // 子,右側 dat[k] = reflect(k); laz[k] = ei; } // 木のノード k に関して,親から順に伝搬処理を行う // これにより dat[k] とその全ての親ノード dat[k>>1], dat[k>>2], ..., dat[1] が更新される. // 更新は根 dat[1] 側から順に行う. inline void thrust(ll k) { REPR(i, height, 1) propagate(k >> i); } // 木のノード k に関して,子から順に値配列の再計算を行う inline void recalc(ll k) { while (k >>= 1) dat[k] = f(reflect((k << 1) | 0), reflect((k << 1) | 1)); } // 半開区間 [a, b) を更新する void update(ll a, ll b, E x) { if (a >= b) return; // assert(a < b) thrust(a += n); // インデックス a の更新 thrust(b += n - 1); // インデックス b-1 の更新 // 以降では l, r は木のノード for (ll l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if (l & 1) laz[l] = h(laz[l], x), l++; // 木のノード l が,親から見て右側の子である場合 if (r & 1) --r, laz[r] = h(laz[r], x); // 木のノード r が,親から見て右側の子である場合 } recalc(a); recalc(b); } // インデックス a の要素の値を x にする. void set_val(ll a, T x) { thrust(a += n); dat[a] = x; laz[a] = ei; recalc(a); } // 半開区間 [a, b) に対するクエリを実行する T query(ll a, ll b) { if (a >= b) return ti; // assert(a>= 1, r >>= 1) { if (l & 1) vl = f(vl, reflect(l++)); if (r & 1) vr = f(reflect(--r), vr); } return f(vl, vr); } template ll find(ll st, C &check, T &acc, ll k, ll l, ll r) { if (l + 1 == r) { acc = f(acc, reflect(k)); return check(acc) ? k - n : -1; } propagate(k); ll m = (l + r) >> 1; if (m <= st) return find(st, check, acc, (k << 1) | 1, m, r); if (st <= l && !check(f(acc, dat[k]))) { acc = f(acc, dat[k]); return -1; } ll vl = find(st, check, acc, (k << 1) | 0, l, m); if (~vl) return vl; return find(st, check, acc, (k << 1) | 1, m, r); } // check が真となる要素を探して,そのインデックスを返す. template ll find(ll st, C &check) { T acc = ti; return find(st, check, acc, 1, 0, n); } }; /* #endregion */ // Problem void solve() { ll n, q; cin >> n >> q; vll a(n); cin >> a; using odd_t = ll; // 偶数の個数 using even_t = ll; // 奇数の個数 using acc_t = ll; // 総和 using elm_t = tuple; using update_t = tuple; auto f = [](elm_t a, elm_t b) -> elm_t { // 要素同士のマージ auto [x0, y0, z0] = a; auto [x1, y1, z1] = b; return {x0 + x1, y0 + y1, z0 + z1}; }; auto g = [](elm_t a, update_t b) -> elm_t { // 要素と作用素のマージ auto [x, y, z] = a; auto [t, u, v] = b; if (u) { // t%2 == 0 なら,偶数は0に,奇数は1になる // t%2 == 1 なら,偶数は1に,奇数は0になる // その後で v が足されるので,偶奇が入れ替わるかもしれない if (t % 2 == 0) { // 偶数は0に,奇数は1になる if (v % 2 == 0) // 偶奇は変わらない return {x, y, v * x + (v + 1) * y}; else // 偶奇が変わる return {y, x, v * x + (v + 1) * y}; } else { // t%2==1, 偶数は1に,奇数は0になる if (v % 2 == 0) // 偶奇が元と変わる return {y, x, (v + 1) * x + v * y}; else return {x, y, (v + 1) * x + v * y}; } } else { acc_t acc = t + v; if (acc % 2 == 0) return {x, y, z + (x + y) * acc}; else return {y, x, z + (x + y) * acc}; } }; auto h = [](update_t a, update_t b) -> update_t { // 作用素と作用素のマージ auto [t0, u0, v0] = a; auto [t1, u1, v1] = b; if (u0 && u1) return {(t0 + ((v0 + t1) % 2)) % 2, true, v1}; else if (u0) return {t0, true, v0 + t1 + v1}; else if (u1) return {(t0 + v0 + t1) % 2, true, v1}; else return {(t0 + v0 + t1), false, v1}; }; elm_t ti = {0, 0, 0}; // 要素の単位元 update_t ei = {0, false, 0}; // 作用素の単位元 LazySegmentTree seg(f, g, h, ti, ei); vc data(n); REP(i, 0, n) data[i] = {a[i] % 2 == 0, a[i] % 2 == 1, a[i]}; seg.build(data); REP(i, 0, q) { ll qn, l, r; cin >> qn >> l >> r; --l, --r; if (qn == 1) { seg.update(l, r + 1, {0, true, 0}); } else if (qn == 2) { ll x; cin >> x; seg.update(l, r + 1, {0, false, x}); } else { // qn == 3 // debug // vll dt(n); // REP(i, 0, n) { // auto [x, y, z] = seg.query(i, i + 1); // dt[i] = z; // } // dump(dt); auto [x, y, z] = seg.query(l, r + 1); cout << z << endl; } } } // entry point int main() { solve(); return 0; }