#include using namespace std; using LL = long long int; #define incID(i, l, r) for(int i = (l) ; i < (r); ++i) #define decID(i, l, r) for(int i = (r) - 1; i >= (l); --i) #define incII(i, l, r) for(int i = (l) ; i <= (r); ++i) #define decII(i, l, r) for(int i = (r) ; i >= (l); --i) #define inc(i, n) incID(i, 0, n) #define dec(i, n) decID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec1(i, n) decII(i, 1, n) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define MT make_tuple #define FI first #define SE second #define FR front() #define BA back() #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); }; auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); }; auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); }; auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); }; #define SI(v) static_cast(v.size()) #define RF(e, v) for(auto & e: v) #define until(e) while(! (e)) #define if_not(e) if(! (e)) #define ef else if #define UR assert(false) #define IN(T, ...) T __VA_ARGS__; IN_(__VA_ARGS__); void IN_() { }; template void IN_(T & a, U & ... b) { cin >> a; IN_(b ...); }; template void OUT(T && a ) { cout << a << endl; } template void OUT(T && a, U && ... b) { cout << a << " "; OUT(b ...); } // ---- ---- template class ModInt { private: LL v; pair ext_gcd(LL a, LL b) { if(b == 0) { assert(a == 1); return { 1, 0 }; } auto p = ext_gcd(b, a % b); return { p.SE, p.FI - (a / b) * p.SE }; } public: ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } } LL get_v() { return v; } ModInt inv() { return ext_gcd(M, v).SE; } ModInt exp(LL b) { ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; } while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; } return p; } friend bool operator< (ModInt a, ModInt b) { return (a.v < b.v); } friend bool operator> (ModInt a, ModInt b) { return (a.v > b.v); } friend bool operator<=(ModInt a, ModInt b) { return (a.v <= b.v); } friend bool operator>=(ModInt a, ModInt b) { return (a.v >= b.v); } friend bool operator==(ModInt a, ModInt b) { return (a.v == b.v); } friend bool operator!=(ModInt a, ModInt b) { return (a.v != b.v); } friend ModInt operator+ (ModInt a ) { return ModInt(+a.v); } friend ModInt operator- (ModInt a ) { return ModInt(-a.v); } friend ModInt operator+ (ModInt a, ModInt b) { return ModInt(a.v + b.v); } friend ModInt operator- (ModInt a, ModInt b) { return ModInt(a.v - b.v); } friend ModInt operator* (ModInt a, ModInt b) { return ModInt(a.v * b.v); } friend ModInt operator/ (ModInt a, ModInt b) { return a * b.inv(); } friend ModInt operator^ (ModInt a, LL b) { return a.exp(b); } friend ModInt & operator+=(ModInt & a, ModInt b) { return (a = a + b); } friend ModInt & operator-=(ModInt & a, ModInt b) { return (a = a - b); } friend ModInt & operator*=(ModInt & a, ModInt b) { return (a = a * b); } friend ModInt & operator/=(ModInt & a, ModInt b) { return (a = a / b); } friend ModInt & operator^=(ModInt & a, LL b) { return (a = a ^ b); } friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; } friend ostream & operator<<(ostream & s, ModInt b) { return (s << b.v); } }; // ---- using MI = ModInt< 1'000'000'007 >; template istream & operator>>(istream & s, vector & v) { RF(e, v) { s >> e; } return s; } template ostream & operator<<(ostream & s, vector const & v) { inc(i, SI(v)) { s << (i == 0 ? "" : " ") << v[i]; } return s; } template pair, vector> factorial(int n) { vector f(n + 1), r(n + 1); inc(i, n + 1) { f[i] = (i == 0 ? 1 : f[i - 1] * i ); } dec(i, n + 1) { r[i] = (i == n ? 1 / f[n] : r[i + 1] * (i + 1)); } return { f, r }; } int main() { IN(int, k); vector c(k); cin >> c; int n = 0, g = 0; RF(e, c) { n += e; g = gcd(g, e); } auto [f, r] = factorial(n); vector dp(g + 1); MI ans = 0; dec1(i, g) { if(g % i != 0) { continue; } int x = n / i; MI v = f[x]; RF(e, c) { v *= r[e / i]; } dp[i] += v; ans += dp[i] / x; inc1(j, i - 1) { if(i % j != 0) { continue; } dp[j] -= dp[i]; } } OUT(ans); }