#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; // const int MOD = 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); } } iosetup; template struct RSQandRUQ { RSQandRUQ(int sz, const Monoid UNITY = 0) : UNITY(UNITY) { init(sz); dat.assign((n << 1) - 1, UNITY); } RSQandRUQ(const vector &a, const Monoid UNITY = 0) : UNITY(UNITY) { int a_sz = a.size(); init(a_sz); dat.resize((n << 1) - 1); REP(i, a_sz) dat[n - 1 + i] = a[i]; for (int i = n - 2; i >= 0; --i) dat[i] = dat[(i << 1) + 1] + dat[(i << 1) + 2]; } void update(int a, int b, Monoid val) { update(a, b, val, 0, 0, n); } Monoid sum(int a, int b) { return sum(a, b, 0, 0, n); } Monoid operator[](const int idx) { return sum(idx, idx + 1); } int find(int a, int b, Monoid val) { return find(a, b, val, 0, 0, n); } private: int n = 1; const Monoid UNITY; vector dat, lazy; vector need_to_be_eval; void init(int sz) { while (n < sz) n <<= 1; lazy.assign((n << 1) - 1, UNITY); need_to_be_eval.assign((n << 1) - 1, false); } inline void evaluate(int node, int left, int right) { if (need_to_be_eval[node]) { dat[node] = (right - left) * lazy[node]; if (node < n - 1) { lazy[(node << 1) + 1] = lazy[(node << 1) + 2] = lazy[node]; need_to_be_eval[(node << 1) + 1] = need_to_be_eval[(node << 1) + 2] = true; } lazy[node] = UNITY; need_to_be_eval[node] = false; } } void update(int a, int b, Monoid val, int node, int left, int right) { evaluate(node, left, right); if (right <= a || b <= left) return; if (a <= left && right <= b) { lazy[node] = val; need_to_be_eval[node] = true; evaluate(node, left, right); } else { update(a, b, val, (node << 1) + 1, left, (left + right) >> 1); update(a, b, val, (node << 1) + 2, (left + right) >> 1, right); dat[node] = dat[(node << 1) + 1] + dat[(node << 1) + 2]; } } Monoid sum(int a, int b, int node, int left, int right) { evaluate(node, left, right); if (right <= a || b <= left) return UNITY; if (a <= left && right <= b) return dat[node]; return sum(a, b, (node << 1) + 1, left, (left + right) >> 1) + sum(a, b, (node << 1) + 2, (left + right) >> 1, right); } int find(int a, int b, Monoid val, int node, int left, int right) { evaluate(node, left, right); if (dat[node] < val || right <= a || b <= left) return -1; if (right - left == 1) return node - (n - 1); int res_l = find(a, b, val, (node << 1) + 1, left, (left + right) >> 1); if (res_l != -1) return res_l; return find(a, b, val, (node << 1) + 2, (left + right) >> 1, right); } }; int main() { int n; cin >> n; struct Solver { RSQandRUQ rsq; Solver() : rsq(20001) {} int add(int x, int y) { int lb = -1, ub = 20001; while (ub - lb > 1) { int mid = (lb + ub) / 2; (rsq[mid] >= y ? lb : ub) = mid; } if (x <= ub) return 0; int sum = rsq.sum(ub, x); rsq.update(ub, x, y); return (x - ub) * y - sum; } }; Solver a, b, c, d; while (n--) { int xa, ya, xb, yb; cin >> xa >> ya >> xb >> yb; cout << a.add(xb, yb) + b.add(-xa, yb) + c.add(-xa, -ya) + d.add(xb, -ya) << '\n'; } return 0; }