#define CPP17 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CPP17 #include #endif // Yay!! #define endl codeforces // macros for iterator #define ALL(v) std::begin(v), std::end(v) #define ALLR(v) std::rbegin(v), std::rend(v) // alias using ll = std::int64_t; using ull = std::uint64_t; using pii = std::pair; using tii = std::tuple; using pll = std::pair; using tll = std::tuple; template using vec = std::vector; template using vvec = vec>; // variadic min/max template const T& var_min(const T &t) { return t; } template const T& var_max(const T &t) { return t; } template const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); } template const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); } // variadic chmin/chmax template void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); } template void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); } // multi demension array template struct multi_dim_array { using type = std::array::type, Head>; }; template struct multi_dim_array { using type = std::array; }; template using mdarray = typename multi_dim_array::type; #ifdef CPP17 // fill container template void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable::value) { t = f(args...); } else { for (ssize_t i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } } #endif // make multi dimension vector template vec make_v(ssize_t sz) { return vec(sz); } template auto make_v(ssize_t hs, Tail&&... ts) { auto v = std::move(make_v(std::forward(ts)...)); return vec(hs, v); } // init namespace init__ { struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io; } namespace utility { template using validate_integer = typename std::enable_if::value, ll>::type; template auto popcount(T n) -> validate_integer { return __builtin_popcount(n); } // 0 indexed template auto msb(T n) -> validate_integer { return 64 - __builtin_clzll(n) - 1; } template constexpr auto ceil_pow2(T s) -> validate_integer { ll ret = 1; while (ret < s) ret *= 2; return ret; } } namespace utility { struct has_id_ele { template auto operator ()(T &&t) -> decltype(T::id_ele(), std::true_type()) { return std::true_type(); } std::false_type operator ()(...) { return std::false_type(); } }; struct has_merge { template auto operator ()(T &&t) -> decltype(T::merge(std::declval(), std::declval()), std::true_type()) { return std::true_type(); } std::false_type operator ()(...) { return std::false_type(); } }; struct has_apply { template auto operator ()(M &&m, Op &&op) -> decltype(m.apply(op), std::true_type()) { return std::true_type(); } std::false_type operator ()(...) { return std::false_type(); } }; template using callable = std::is_same::type, std::true_type>; template using is_monoid = std::conjunction< callable, callable>; template using enable_apply = callable; } namespace segtree { template class LazySegmentTree { static_assert(utility::is_monoid::value, "M must be monoid."); static_assert(utility::is_monoid::value, "Op must be monoid."); static_assert(utility::enable_apply::value, "Op is not operator of M."); using size_type = ssize_t; struct segment { M m; Op op; bool has_lazy; segment(M m = M::id_ele()) : m(m), op(Op::id_ele()), has_lazy(false) { } void update_op(Op o) { op = Op::merge(op, o); has_lazy = true; } void apply() { if (!has_lazy) return; m.apply(op); init_op(); } void init_op() { op = Op::id_ele(); has_lazy = false; } }; vec segs; size_type height; void push(size_type idx) { auto &seg = segs[idx]; if (!seg.has_lazy) return; auto tmp = seg.op; seg.apply(); for (int i = 0; i < 2; i++) { auto cidx = 2 * idx + i; if (2 * size() <= cidx) break; auto &cseg = segs[cidx]; cseg.update_op(tmp); } } void propagate_from_top(size_type idx) { for (int i = height; 1 <= i; i--) push(idx >> i); } void update_from_bottom(size_type idx) { while (true) { auto pidx = idx / 2; if (pidx == 0) break; push(2 * pidx); push(2 * pidx + 1); segs[pidx].m = M::merge(segs[2 * pidx].m, segs[2 * pidx + 1].m); idx = pidx; } } size_type get_endpoint_seg(size_type i) { i += size(); return i / (i & -i); } public: template LazySegmentTree(const vec &v) { size_type sz = utility::ceil_pow2(v.size()); segs.resize(sz * 2); height = utility::msb(sz); for (auto i = 0; i < v.size(); i++) segs[i + sz] = v[i]; for (auto i = sz - 1; 1 <= i; i--) segs[i] = M::merge(segs[2 * i].m, segs[2 * i + 1].m); } size_type size() const { return segs.size() / 2; } template void update_query(size_type ql, size_type qr, const T &t) { Op op(t); auto l0 = get_endpoint_seg(ql); auto r0 = get_endpoint_seg(qr); propagate_from_top(l0); propagate_from_top(r0); size_type lnode = ql + size(), rnode = qr + size(); while (lnode < rnode) { if (lnode & 1) { segs[lnode].update_op(op); push(lnode); lnode++; } if (rnode & 1) { rnode--; segs[rnode].update_op(op); push(rnode); } lnode /= 2; rnode /= 2; } update_from_bottom(l0); update_from_bottom(r0); } M get_query(ll ql, ll qr) { auto ret = M::id_ele(); auto l0 = get_endpoint_seg(ql); auto r0 = get_endpoint_seg(qr); propagate_from_top(l0); propagate_from_top(r0); size_type lnode = ql + size(), rnode = qr + size(); while (lnode < rnode) { if (lnode & 1) { push(lnode); ret = M::merge(segs[lnode].m, ret); lnode++; } if (rnode & 1) { rnode--; push(rnode); ret = M::merge(ret, segs[rnode].m); } lnode /= 2; rnode /= 2; } return ret; } }; } namespace utility { template struct Compressor { using size_type = ssize_t; Compressor(vec arg) : v(std::move(arg)) { std::sort(ALL(v)); auto ite = std::unique(ALL(v)); v.erase(ite, v.end()); } const T& operator [](size_type i) const { return v[i]; } size_type get(const T &t) const { return std::distance(v.begin(), std::lower_bound(ALL(v), t)); } size_type size() const { return v.size(); } template vec compress(const vec &v) const { vec ret(v.size()); for (size_type i = 0; i < v.size(); i++) ret[i] = get(v[i]); return ret; } private: vec v; }; }; const ssize_t SIZE = 20010; struct Op { Op() { } static Op id_ele() { return Op(); } static Op merge(Op a, Op b) { return Op(); } }; struct M { ll l, r; pll rng; M(ll l, ll r, pll rng) : l(l), r(r), rng(rng) { } static M id_ele() { return M(-SIZE, -SIZE, pll(-SIZE, -SIZE)); } static M merge(M a, M b) { if (b.l == -SIZE) return a; if (a.l == -SIZE) return b; ll l = std::min(a.l, b.l); ll r = std::max(a.r, b.r); pll rng = merge_rng(a.rng, b.rng); return M(l, r, rng); } void apply(Op o) { rng = pll(l, r); } static ll get_rng_l(ll a, ll b) { if (a == -SIZE) return b; if (b == -SIZE) return a; return std::min(a, b); } static ll get_rng_r(ll a, ll b) { if (a == -SIZE) return b; if (b == -SIZE) return a; return std::max(a, b); } static pll merge_rng(pll p, pll q) { auto [ a, b ] = p; auto [ c, d ] = q; return pll(get_rng_l(a, c), get_rng_r(b, d)); } }; int main() { using square = std::tuple; using lst_type = segtree::LazySegmentTree; ll n; std::cin >> n; vec init_v; init_v.reserve(2 * SIZE); vec sv(n); for (auto &&e : sv) { ll a, b, c, d; std::cin >> a >> b >> c >> d; e = square(a, b, c, d); } for (ll i = 0; i < 2 * SIZE; i++) init_v.push_back(M(i, i + 1, pll(-SIZE, -SIZE))); auto len = [](pll p) { auto [ a, b ] = p; return b - a; }; vec lstv(2 * SIZE, lst_type(init_v)); for (auto &&e : sv) { auto [ xa, ya, xb, yb ] = e; ll ans = 0; for (ll y = ya; y < yb; y++) { pll a = lstv[y + SIZE].get_query(0, 2 * SIZE).rng; lstv[y + SIZE].update_query(xa + SIZE, xb + SIZE, Op()); pll b = lstv[y + SIZE].get_query(0, 2 * SIZE).rng; ans += len(b) - len(a); } std::cout << ans << "\n"; } return 0; }